
TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD: A Distributed Shared-Nothing RDF Engine
based on Asynchronous Message Passing

Sairam Gurajada†, Stephan Seufert†,
Iris Miliaraki†, Martin Theobald‡

†Databases & Information Systems Group ‡ ADReM Research Group
Max-Planck Institute for Informatics University of Antwerp

Saarbrücken, Germany Antwerp, Belgium

1 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Resource Description Framework (RDF)

RDF is a data model for representing information on the Web

RDF triples obtained from IE

Barack Obama isA President of USA.

Barack Obama bornIn Honolulu .

Barack Obama won Nobel Peace Prize .

Barack Obama memberOf Democratic Party .

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

won

Example datasets:
YAGO (>120 M facts), DBpedia (>400 M facts),
Freebase, ...

2 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Resource Description Framework (RDF)

RDF is a data model for representing information on the Web

RDF triples obtained from IE

Barack Obama isA President of USA.

Barack Obama bornIn Honolulu .

Barack Obama won Nobel Peace Prize .

Barack Obama memberOf Democratic Party .

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

won

Example datasets:
YAGO (>120 M facts), DBpedia (>400 M facts),
Freebase, ...

2 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Resource Description Framework (RDF)

RDF is a data model for representing information on the Web

RDF triples obtained from IE

Barack Obama isA President of USA.

Barack Obama bornIn Honolulu .

Barack Obama won Nobel Peace Prize .

Barack Obama memberOf Democratic Party .

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

won

Example datasets:
YAGO (>120 M facts), DBpedia (>400 M facts),
Freebase, ...

2 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Resource Description Framework (RDF)

RDF is a data model for representing information on the Web

RDF triples obtained from IE

Barack Obama isA President of USA.

Barack Obama bornIn Honolulu .

Barack Obama won Nobel Peace Prize .

Barack Obama memberOf Democratic Party .

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

won

Example datasets:
YAGO (>120 M facts), DBpedia (>400 M facts),
Freebase, ...

2 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Scale of RDF Data Published – Linked Open Data Cloud

Source: http://linkeddata.org

I As of 2011, there exists more than 30 billion triples in
the linked data cloud (from more than 300 sources)

I Billion Triple Challenge (BTC) published more than
one billion triples in years 2008, 2010, 2011, 2012

3 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Indexing and Querying RDF Data

I RDF triples are stored and indexed in a relational table (relational approach)

I SPARQL is the language suggested by W3C for querying RDF data

I SPARQL has many similarities with standard SQL

I SELECT-PROJECT-JOIN forms the main building blocks of SPARQL

SPARQL Query:
Find persons who are born in USA and won a prize..

SELECT ?person, ?city, ?prize WHERE {
(R1) ?person <bornIn> ?city .

(R2) ?city <locatedIn> USA .

(R3) ?person <won> ?prize . }

?person ?city

?prize

USA
bornIn locatedIn

won

RDF Data:
Subject Predicate Object
Barack Obama bornIn Honolulu

Barack Obama won Nobel Peace Prize

Barack Obama won Grammy Award

Barack Obama memberOf Republican Party

Honolulu locatedIn United States

Barack Obama isA Singer

John F. Kennedy bornIn Brookline

John F. Kennedy memberOf Republican Party

John F. Kennedy diedIn Dallas

Dallas locatedIn United States

Brookline locatedIn United States

...
Results: (R1 on R2 on R3)

?person ?city ?prize
Barack Obama Honolulu Peace Nobel Prize

Barack Obama Honolulu Grammy Award

...

4 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Indexing and Querying RDF Data

I RDF triples are stored and indexed in a relational table (relational approach)

I SPARQL is the language suggested by W3C for querying RDF data

I SPARQL has many similarities with standard SQL

I SELECT-PROJECT-JOIN forms the main building blocks of SPARQL

SPARQL Query:
Find persons who are born in USA and won a prize..

SELECT ?person, ?city, ?prize WHERE {
(R1) ?person <bornIn> ?city .

(R2) ?city <locatedIn> USA .

(R3) ?person <won> ?prize . }

?person ?city

?prize

USA
bornIn locatedIn

won

RDF Data:
Subject Predicate Object
Barack Obama bornIn Honolulu

Barack Obama won Nobel Peace Prize

Barack Obama won Grammy Award

Barack Obama memberOf Republican Party

Honolulu locatedIn United States

Barack Obama isA Singer

John F. Kennedy bornIn Brookline

John F. Kennedy memberOf Republican Party

John F. Kennedy diedIn Dallas

Dallas locatedIn United States

Brookline locatedIn United States

...

Results: (R1 on R2 on R3)
?person ?city ?prize
Barack Obama Honolulu Peace Nobel Prize

Barack Obama Honolulu Grammy Award

...

4 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Indexing and Querying RDF Data

I RDF triples are stored and indexed in a relational table (relational approach)

I SPARQL is the language suggested by W3C for querying RDF data

I SPARQL has many similarities with standard SQL

I SELECT-PROJECT-JOIN forms the main building blocks of SPARQL

SPARQL Query:
Find persons who are born in USA and won a prize..

SELECT ?person, ?city, ?prize WHERE {
(R1) ?person <bornIn> ?city .

(R2) ?city <locatedIn> USA .

(R3) ?person <won> ?prize . }

?person ?city

?prize

USA
bornIn locatedIn

won

RDF Data:
Subject Predicate Object
Barack Obama bornIn Honolulu

Barack Obama won Nobel Peace Prize

Barack Obama won Grammy Award

Barack Obama memberOf Republican Party

Honolulu locatedIn United States

Barack Obama isA Singer

John F. Kennedy bornIn Brookline

John F. Kennedy memberOf Republican Party

John F. Kennedy diedIn Dallas

Dallas locatedIn United States

Brookline locatedIn United States

...
Results: (R1 on R2 on R3)

?person ?city ?prize
Barack Obama Honolulu Peace Nobel Prize

Barack Obama Honolulu Grammy Award

...

4 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Current Approaches

Efficiency – thoroughly investigated in single-node setting
I crucial factors – Join-order optimization, Join-ahead pruning, indexing layout,

choice of operators
I Eg. Jena, Sesame, HexaStore, MonetDB-RDF, SW-Store, RDF-3X, TripleBit,

BitMat, gStore, ...

Scalability – recently a line of distributed systems has been proposed
I SHARD,H-RDF-3X︸ ︷︷ ︸

Relational-based

, Trinity.RDF︸ ︷︷ ︸
Graph-based

, ...

Relational-based (Joins) vs Graph-based (Exploration) [distributed setting]
I SPARQL 1.0 requires a row-oriented output −→ joins are inevitable
I Relational approaches suffer from “large intermediate relations”

(inaccurate/insufficient statistics resulting in poor query plans)

I Graph-based systems use distributed graph exploration followed by relational
joins

I Effective when graph exploration prunes a lot of bindings
(in case of selective queries)

Problems with existing distributed relational-based RDF engines
I 1. Synchronous processing of joins

I 2. Dangling triples – occur in intermediate relations but not in final results

5 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Current Approaches

Efficiency – thoroughly investigated in single-node setting
I crucial factors – Join-order optimization, Join-ahead pruning, indexing layout,

choice of operators
I Eg. Jena, Sesame, HexaStore, MonetDB-RDF, SW-Store, RDF-3X, TripleBit,

BitMat, gStore, ...

Scalability – recently a line of distributed systems has been proposed
I SHARD,H-RDF-3X︸ ︷︷ ︸

Relational-based

, Trinity.RDF︸ ︷︷ ︸
Graph-based

, ...

Relational-based (Joins) vs Graph-based (Exploration) [distributed setting]
I SPARQL 1.0 requires a row-oriented output −→ joins are inevitable
I Relational approaches suffer from “large intermediate relations”

(inaccurate/insufficient statistics resulting in poor query plans)

I Graph-based systems use distributed graph exploration followed by relational
joins

I Effective when graph exploration prunes a lot of bindings
(in case of selective queries)

Problems with existing distributed relational-based RDF engines
I 1. Synchronous processing of joins

I 2. Dangling triples – occur in intermediate relations but not in final results

5 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Current Approaches

Efficiency – thoroughly investigated in single-node setting
I crucial factors – Join-order optimization, Join-ahead pruning, indexing layout,

choice of operators
I Eg. Jena, Sesame, HexaStore, MonetDB-RDF, SW-Store, RDF-3X, TripleBit,

BitMat, gStore, ...

Scalability – recently a line of distributed systems has been proposed
I SHARD,H-RDF-3X︸ ︷︷ ︸

Relational-based

, Trinity.RDF︸ ︷︷ ︸
Graph-based

, ...

Relational-based (Joins) vs Graph-based (Exploration) [distributed setting]
I SPARQL 1.0 requires a row-oriented output −→ joins are inevitable
I Relational approaches suffer from “large intermediate relations”

(inaccurate/insufficient statistics resulting in poor query plans)

I Graph-based systems use distributed graph exploration followed by relational
joins

I Effective when graph exploration prunes a lot of bindings
(in case of selective queries)

Problems with existing distributed relational-based RDF engines
I 1. Synchronous processing of joins

I 2. Dangling triples – occur in intermediate relations but not in final results

5 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Current Approaches

Efficiency – thoroughly investigated in single-node setting
I crucial factors – Join-order optimization, Join-ahead pruning, indexing layout,

choice of operators
I Eg. Jena, Sesame, HexaStore, MonetDB-RDF, SW-Store, RDF-3X, TripleBit,

BitMat, gStore, ...

Scalability – recently a line of distributed systems has been proposed
I SHARD,H-RDF-3X︸ ︷︷ ︸

Relational-based

, Trinity.RDF︸ ︷︷ ︸
Graph-based

, ...

Relational-based (Joins) vs Graph-based (Exploration) [distributed setting]
I SPARQL 1.0 requires a row-oriented output −→ joins are inevitable
I Relational approaches suffer from “large intermediate relations”

(inaccurate/insufficient statistics resulting in poor query plans)
I Graph-based systems use distributed graph exploration followed by relational

joins
I Effective when graph exploration prunes a lot of bindings

(in case of selective queries)

Problems with existing distributed relational-based RDF engines
I 1. Synchronous processing of joins

I 2. Dangling triples – occur in intermediate relations but not in final results

5 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Current Approaches

Efficiency – thoroughly investigated in single-node setting
I crucial factors – Join-order optimization, Join-ahead pruning, indexing layout,

choice of operators
I Eg. Jena, Sesame, HexaStore, MonetDB-RDF, SW-Store, RDF-3X, TripleBit,

BitMat, gStore, ...

Scalability – recently a line of distributed systems has been proposed
I SHARD,H-RDF-3X︸ ︷︷ ︸

Relational-based

, Trinity.RDF︸ ︷︷ ︸
Graph-based

, ...

Relational-based (Joins) vs Graph-based (Exploration) [distributed setting]
I SPARQL 1.0 requires a row-oriented output −→ joins are inevitable
I Relational approaches suffer from “large intermediate relations”

(inaccurate/insufficient statistics resulting in poor query plans)
I Graph-based systems use distributed graph exploration followed by relational

joins
I Effective when graph exploration prunes a lot of bindings

(in case of selective queries)

Problems with existing distributed relational-based RDF engines
I 1. Synchronous processing of joins

I 2. Dangling triples – occur in intermediate relations but not in final results

5 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

1. Synchronous Processing of Joins

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Synchronous case 1 :
MR job1 → MR job2 → MR job3
Synchronous case 2 :
MR job1 → MR job2
Synchronous case 3 :
(MR job1 || MR job2) → MR job3

MR job3

MR job1 MR job2

MR job2

MR job1

MR job3

MR job1 MR job2

on1

Slave 1

on2 on3

MR job3

MR job1 MR job2

on1

Slave 2

on2 on3

MR job3

MR job1 MR job2

Wait!!

Our approach: Minimize dependancies among join operators
and only synchronize when needed!
(using asynchronous communication (MPICH2) protocol)

6 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

1. Synchronous Processing of Joins

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Synchronous case 1 :
MR job1 → MR job2 → MR job3

Synchronous case 2 :
MR job1 → MR job2
Synchronous case 3 :
(MR job1 || MR job2) → MR job3

MR job3

MR job1 MR job2

MR job2

MR job1

MR job3

MR job1 MR job2

on1

Slave 1

on2 on3

MR job3

MR job1 MR job2

on1

Slave 2

on2 on3

MR job3

MR job1 MR job2

Wait!!

Our approach: Minimize dependancies among join operators
and only synchronize when needed!
(using asynchronous communication (MPICH2) protocol)

6 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

1. Synchronous Processing of Joins

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Synchronous case 1 :
MR job1 → MR job2 → MR job3
Synchronous case 2 :
MR job1 → MR job2

Synchronous case 3 :
(MR job1 || MR job2) → MR job3

MR job3

MR job1 MR job2

MR job2

MR job1

MR job3

MR job1 MR job2

on1

Slave 1

on2 on3

MR job3

MR job1 MR job2

on1

Slave 2

on2 on3

MR job3

MR job1 MR job2

Wait!!

Our approach: Minimize dependancies among join operators
and only synchronize when needed!
(using asynchronous communication (MPICH2) protocol)

6 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

1. Synchronous Processing of Joins

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Synchronous case 1 :
MR job1 → MR job2 → MR job3
Synchronous case 2 :
MR job1 → MR job2
Synchronous case 3 :
(MR job1 || MR job2) → MR job3

MR job3

MR job1 MR job2

MR job2

MR job1

MR job3

MR job1 MR job2

on1

Slave 1

on2 on3

MR job3

MR job1 MR job2

on1

Slave 2

on2 on3

MR job3

MR job1 MR job2

Wait!!

Our approach: Minimize dependancies among join operators
and only synchronize when needed!
(using asynchronous communication (MPICH2) protocol)

6 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

1. Synchronous Processing of Joins

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Synchronous case 1 :
MR job1 → MR job2 → MR job3
Synchronous case 2 :
MR job1 → MR job2
Synchronous case 3 :
(MR job1 || MR job2) → MR job3

MR job3

MR job1 MR job2

MR job2

MR job1

MR job3

MR job1 MR job2

on1

Slave 1

on2 on3

MR job3

MR job1 MR job2

on1

Slave 2

on2 on3

MR job3

MR job1 MR job2

Asynchronous Wait!!

Our approach: Minimize dependancies among join operators
and only synchronize when needed!
(using asynchronous communication (MPICH2) protocol)

6 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Pruning Dangling Triples

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Sideways Information Passing (SIP) of RDF-3X1

I Powerful runtime pruning technique

I Shares information across join operators

I Requires synchronization

on1

on2 on3

R1

R2

R3

R4

on1

on2 on3

R1

R2

R3

R4

Our approach: Join-ahead pruning

1 Pre-partition the triples (into groups)

2 Query over groups to find the ones
which are relevant to the query

3 Scan & Join only triples from the
relevant groups

1
RDF-3X: a RISC-style Engine for RDF, VLDBJ 2010

7 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Pruning Dangling Triples

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Sideways Information Passing (SIP) of RDF-3X1

I Powerful runtime pruning technique

I Shares information across join operators

I Requires synchronization

on1

on2 on3

R1

R2

R3

R4

on1

on2 on3

R1

R2

R3

R4

Our approach: Join-ahead pruning

1 Pre-partition the triples (into groups)

2 Query over groups to find the ones
which are relevant to the query

3 Scan & Join only triples from the
relevant groups

1
RDF-3X: a RISC-style Engine for RDF, VLDBJ 2010

7 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Pruning Dangling Triples

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Sideways Information Passing (SIP) of RDF-3X1

I Powerful runtime pruning technique

I Shares information across join operators

I Requires synchronization

on1

on2 on3

R1

R2

R3

R4

on1

on2 on3

R1

R2

R3

R4

Our approach: Join-ahead pruning

1 Pre-partition the triples (into groups)

2 Query over groups to find the ones
which are relevant to the query

3 Scan & Join only triples from the
relevant groups

1
RDF-3X: a RISC-style Engine for RDF, VLDBJ 2010

7 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Pruning Dangling Triples

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Sideways Information Passing (SIP) of RDF-3X1

I Powerful runtime pruning technique

I Shares information across join operators

I Requires synchronization

on1

on2 on3

R1

R2

R3

R4

on1

on2 on3

R1

R2

R3

R4

Our approach: Join-ahead pruning

1 Pre-partition the triples (into groups)

2 Query over groups to find the ones
which are relevant to the query

3 Scan & Join only triples from the
relevant groups

1
RDF-3X: a RISC-style Engine for RDF, VLDBJ 2010

7 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Pruning Dangling Triples

Consider a query with four relations R1, R2, R3, R4 with join order:

(R1 on2 R2) on1 (R3 on3 R4)

on1

on2 on3

R1

R2

R3

R4

Sideways Information Passing (SIP) of RDF-3X1

I Powerful runtime pruning technique

I Shares information across join operators

I Requires synchronization

on1

on2 on3

R1

R2

R3

R4

on1

on2 on3

R1

R2

R3

R4

Our approach: Join-ahead pruning

1 Pre-partition the triples (into groups)

2 Query over groups to find the ones
which are relevant to the query

3 Scan & Join only triples from the
relevant groups

1
RDF-3X: a RISC-style Engine for RDF, VLDBJ 2010

7 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Join-ahead Pruning via Graph Summarization

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

memOf won

Locality-based grouping (using METIS) Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <won> ?prize . }

P1 P2

P4

locIn, bornIn

isA,won

won

Supernode Bindings:
?city : P1
?prize : P2, P4

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <governor> ?city2 . }

Supernode Bindings: !!! Empty Result
?city : --

?prize : --

False postives may occur but no false negatives!!!

8 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Join-ahead Pruning via Graph Summarization

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

memOf won

Locality-based grouping (using METIS)

Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <won> ?prize . }

P1 P2

P4

locIn, bornIn

isA,won

won

Supernode Bindings:
?city : P1
?prize : P2, P4

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <governor> ?city2 . }

Supernode Bindings: !!! Empty Result
?city : --

?prize : --

False postives may occur but no false negatives!!!

8 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Join-ahead Pruning via Graph Summarization

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

memOf won

Locality-based grouping (using METIS) Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <won> ?prize . }

P1 P2

P4

locIn, bornIn

isA,won

won

Supernode Bindings:
?city : P1
?prize : P2, P4

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <governor> ?city2 . }

Supernode Bindings: !!! Empty Result
?city : --

?prize : --

False postives may occur but no false negatives!!!

8 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Join-ahead Pruning via Graph Summarization

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

memOf won

Locality-based grouping (using METIS) Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <won> ?prize . }

P1 P2

P4

locIn, bornIn

isA,won

won

Supernode Bindings:
?city : P1
?prize : P2, P4

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <governor> ?city2 . }

Supernode Bindings: !!! Empty Result
?city : --

?prize : --

False postives may occur but no false negatives!!!

8 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Join-ahead Pruning via Graph Summarization

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

memOf won

Locality-based grouping (using METIS) Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <won> ?prize . }

P1 P2

P4

locIn, bornIn

isA,won

won

Supernode Bindings:
?city : P1
?prize : P2, P4

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <governor> ?city2 . }

Supernode Bindings: !!! Empty Result
?city : --

?prize : --

False postives may occur but no false negatives!!!

8 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

2. Join-ahead Pruning via Graph Summarization

Barack Obama

Democratic PartyHonolulu

USA

Lady GagaSinger

Grammy Award

New York

Texas New Haven

George W Bush

Republican Party

Nobel Peace prize

Jimmy Carter

Plains

bornIn

won

wonmemOf

isA

locIn

memOf

governor bornIn

locIn locIn

isA

won

bornIn

locIn

bornIn

locIn

won

memOf won

Locality-based grouping (using METIS) Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <won> ?prize . }

P1 P2

P4

locIn, bornIn

isA,won

won

Supernode Bindings:
?city : P1
?prize : P2, P4

SPARQL Query:
SELECT ?city, ?prize WHERE {
Barack Obama <bornIn> ?city .

?city <locatedIn> USA .

Barack Obama <governor> ?city2 . }

Supernode Bindings: !!! Empty Result
?city : --

?prize : --

False postives may occur but no false negatives!!!

8 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Distributed RDF Store

TriAD (for “Triple Asynchronous and Distributed”) – a distributed RDF
Store

Join-ahead pruning
via Graph Summarization

Asynchronous Processing of Joins
via MPICH2 communication protocol

Two-stage Query Optimization
(distributed, multi-threading, and join-ahead pruning into account)

Main-memory backed six permutation distributed indexes
(with locality-aware sharding and encoded summary information)

9 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Distributed RDF Store

TriAD (for “Triple Asynchronous and Distributed”) – a distributed RDF
Store

Join-ahead pruning
via Graph Summarization

Asynchronous Processing of Joins
via MPICH2 communication protocol

Two-stage Query Optimization
(distributed, multi-threading, and join-ahead pruning into account)

Main-memory backed six permutation distributed indexes
(with locality-aware sharding and encoded summary information)

9 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Distributed RDF Store

TriAD (for “Triple Asynchronous and Distributed”) – a distributed RDF
Store

Join-ahead pruning
via Graph Summarization

Asynchronous Processing of Joins
via MPICH2 communication protocol

Two-stage Query Optimization
(distributed, multi-threading, and join-ahead pruning into account)

Main-memory backed six permutation distributed indexes
(with locality-aware sharding and encoded summary information)

9 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Distributed RDF Store

TriAD (for “Triple Asynchronous and Distributed”) – a distributed RDF
Store

Join-ahead pruning
via Graph Summarization

Asynchronous Processing of Joins
via MPICH2 communication protocol

Two-stage Query Optimization
(distributed, multi-threading, and join-ahead pruning into account)

Main-memory backed six permutation distributed indexes
(with locality-aware sharding and encoded summary information)

9 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Distributed RDF Store

TriAD (for “Triple Asynchronous and Distributed”) – a distributed RDF
Store

Join-ahead pruning
via Graph Summarization

Asynchronous Processing of Joins
via MPICH2 communication protocol

Two-stage Query Optimization
(distributed, multi-threading, and join-ahead pruning into account)

Main-memory backed six permutation distributed indexes
(with locality-aware sharding and encoded summary information)

9 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Architecture

Indexing

1

2

3

SPARQL Query Processing

Stage1

Stage2

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....

SPO
....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

10 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Architecture

Indexing

1

2

3

SPARQL Query Processing

Stage1

Stage2

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....

SPO
....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

10 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Architecture

Indexing

1

2

3

SPARQL Query Processing

Stage1

Stage2

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....

SPO
....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

10 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Architecture

Indexing

1

2

3

SPARQL Query Processing

Stage1

Stage2

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....

SPO
....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

10 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Architecture

Indexing

1

2

3

SPARQL Query Processing

Stage1

Stage2

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....

SPO
....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

10 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

TriAD Architecture

Indexing

1

2

3

SPARQL Query Processing

Stage1

Stage2

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....

SPO
....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

10 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Indexing

RDF graph partitioning

I using a locality-based non-overlapping partitioning algorithm

I i.e Each s (or o) of RDF triple 〈s, p, o〉 mapped to one supernode Ps (or Po)

Triple encoding

I Each triple 〈s, p, o〉 is encoded into two triples: data triple, summary triple

I Dictionary encoding: Each entity is assigned a globally unique id is computed
by concatenating (supernode id) Ps and a (local id) ids
Eg. 〈Barack Obama, won, Nobel Prize〉
Data triple: 〈1||1, 6, 4||3〉 Summary triple 〈1, 6, 4〉

Locality-aware sharding and distributed indexing of data triples

I Each data triple is hash partitioned onto atmost two slaves and indexed in six
permutations (in total)
Eg. triple 〈1||1, 6, 4||3〉 is hashed on to slaves 1 mod n and 4 mod n (for
n-slaves)

Summary graph index

I Summary triples are indexed in two-permutation adjacency list for efficient
graph exploration

11 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Indexing

RDF graph partitioning

I using a locality-based non-overlapping partitioning algorithm

I i.e Each s (or o) of RDF triple 〈s, p, o〉 mapped to one supernode Ps (or Po)

Triple encoding

I Each triple 〈s, p, o〉 is encoded into two triples: data triple, summary triple

I Dictionary encoding: Each entity is assigned a globally unique id is computed
by concatenating (supernode id) Ps and a (local id) ids
Eg. 〈Barack Obama, won, Nobel Prize〉
Data triple: 〈1||1, 6, 4||3〉 Summary triple 〈1, 6, 4〉

Locality-aware sharding and distributed indexing of data triples

I Each data triple is hash partitioned onto atmost two slaves and indexed in six
permutations (in total)
Eg. triple 〈1||1, 6, 4||3〉 is hashed on to slaves 1 mod n and 4 mod n (for
n-slaves)

Summary graph index

I Summary triples are indexed in two-permutation adjacency list for efficient
graph exploration

11 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Indexing

RDF graph partitioning

I using a locality-based non-overlapping partitioning algorithm

I i.e Each s (or o) of RDF triple 〈s, p, o〉 mapped to one supernode Ps (or Po)

Triple encoding

I Each triple 〈s, p, o〉 is encoded into two triples: data triple, summary triple

I Dictionary encoding: Each entity is assigned a globally unique id is computed
by concatenating (supernode id) Ps and a (local id) ids
Eg. 〈Barack Obama, won, Nobel Prize〉
Data triple: 〈1||1, 6, 4||3〉 Summary triple 〈1, 6, 4〉

Locality-aware sharding and distributed indexing of data triples

I Each data triple is hash partitioned onto atmost two slaves and indexed in six
permutations (in total)
Eg. triple 〈1||1, 6, 4||3〉 is hashed on to slaves 1 mod n and 4 mod n (for
n-slaves)

Summary graph index

I Summary triples are indexed in two-permutation adjacency list for efficient
graph exploration

11 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Indexing

RDF graph partitioning

I using a locality-based non-overlapping partitioning algorithm

I i.e Each s (or o) of RDF triple 〈s, p, o〉 mapped to one supernode Ps (or Po)

Triple encoding

I Each triple 〈s, p, o〉 is encoded into two triples: data triple, summary triple

I Dictionary encoding: Each entity is assigned a globally unique id is computed
by concatenating (supernode id) Ps and a (local id) ids
Eg. 〈Barack Obama, won, Nobel Prize〉
Data triple: 〈1||1, 6, 4||3〉 Summary triple 〈1, 6, 4〉

Locality-aware sharding and distributed indexing of data triples

I Each data triple is hash partitioned onto atmost two slaves and indexed in six
permutations (in total)
Eg. triple 〈1||1, 6, 4||3〉 is hashed on to slaves 1 mod n and 4 mod n (for
n-slaves)

Summary graph index

I Summary triples are indexed in two-permutation adjacency list for efficient
graph exploration

11 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Query Processing

In TriAD, query processing is performed in two stages

Stage 1: Summary graph query processing (join-ahead pruning)

I Performed using graph exploration at master node to generate supernode
bindings

Stage 2: Data graph query processing

I Done using relational joins in a distributed setup

I Inspired by the RISC style processing, we employ three physical operators:
Distributed Index Scan (DIS): Invokes a parallel scan over a permutation list
that is sharded across all slaves
Distributed Merge Join (DMJ): If both input (or intermediate) relations are
sorted according to the join key(s) in the query plan
Distributed Hash Join (DHJ): If the input (or intermediate) relations are not
sorted according to their join key(s)

12 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Query Processing

In TriAD, query processing is performed in two stages

Stage 1: Summary graph query processing (join-ahead pruning)

I Performed using graph exploration at master node to generate supernode
bindings

Stage 2: Data graph query processing

I Done using relational joins in a distributed setup

I Inspired by the RISC style processing, we employ three physical operators:
Distributed Index Scan (DIS): Invokes a parallel scan over a permutation list
that is sharded across all slaves
Distributed Merge Join (DMJ): If both input (or intermediate) relations are
sorted according to the join key(s) in the query plan
Distributed Hash Join (DHJ): If the input (or intermediate) relations are not
sorted according to their join key(s)

12 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Global Statistics & Query Optimization

Precomputed statistics

I Computed in parallel at slaves and sent to master node

I Statistics:
Individual cardinalities: s, p, o of SPO triples
Pair cardinalities: (s, o), (s, p), (p, o)
Join selectivities of predicate pairs (p1, p2)

I Similar statistics are computed over summary graph

For a given query with patterns Q {R1, R2, ..Rn}

Stage 1: Exploration Optimization

We compute the exploration plan by using a bottom-up dynamic programming and the
following cost model:

Cost(R1, . . . , Rn) ∝ Card(R1) +
n∑

i=2

(
Card(Ri)

i∏
j=1

Sel(Ri, Rj)
)

(1)

13 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Global Statistics & Query Optimization

Precomputed statistics

I Computed in parallel at slaves and sent to master node

I Statistics:
Individual cardinalities: s, p, o of SPO triples
Pair cardinalities: (s, o), (s, p), (p, o)
Join selectivities of predicate pairs (p1, p2)

I Similar statistics are computed over summary graph

For a given query with patterns Q {R1, R2, ..Rn}

Stage 1: Exploration Optimization

We compute the exploration plan by using a bottom-up dynamic programming and the
following cost model:

Cost(R1, . . . , Rn) ∝ Card(R1) +
n∑

i=2

(
Card(Ri)

i∏
j=1

Sel(Ri, Rj)
)

(1)

13 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Re-estimating cardinalities of a relations Ri

New cardinalities are re-estimated from the Stage 1 supernode bindings

I Card(Ri) :=
|CQ

s |
|Cs|

· |C
Q
o |
|Co|

· Card(Ri) (on the fly computation)

where |Cs|, |Co| are the supernode bindings of Ri

and |CQ
s |, |CQ

o | are the supernode bindings of Q (Ri ∈ Q)

Stage 2: Global plan optimization

A global plan is computed for stage 2 using re-estimated cardinalities and the
following cost model

Cost(Q) :=

Cost(Rk

i) if Ri denotes a DIS over permutation k;

max(Cost(Qleft), Cost(Qright))

+Cost(Qleft onop Qright)

+Cost(Qleft
op Qright) otherwise.

The cost model captures the multi-threaded and distributed execution framework

14 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Re-estimating cardinalities of a relations Ri

New cardinalities are re-estimated from the Stage 1 supernode bindings

I Card(Ri) :=
|CQ

s |
|Cs|

· |C
Q
o |
|Co|

· Card(Ri) (on the fly computation)

where |Cs|, |Co| are the supernode bindings of Ri

and |CQ
s |, |CQ

o | are the supernode bindings of Q (Ri ∈ Q)

Stage 2: Global plan optimization

A global plan is computed for stage 2 using re-estimated cardinalities and the
following cost model

Cost(Q) :=

Cost(Rk

i) if Ri denotes a DIS over permutation k;

max(Cost(Qleft), Cost(Qright))

+Cost(Qleft onop Qright)

+Cost(Qleft
op Qright) otherwise.

The cost model captures the multi-threaded and distributed execution framework

14 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Querying Optimization & Processing - Example

SPARQL Query:
Find persons who are born in USA and won a prize..

SELECT ?person, ?city, ?prize WHERE {
R1 ?person <bornIn> ?city .

R2 ?city <locatedIn> USA .

R3 ?person <won> ?prize .

R4 ?prize <hasName> ?name . }

Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

Stage 1
(Optimization)

Exploration

Supernode Bindings:
?person : P1, P2, P4

?city : P1, P2, P4

?prize : P2, P4

Sharding: R2 ?city ?prize

?person

Cost:max(200,150)+15

Cost:max(105,215)+130

Order:

Cost:

Slaves:

Supernodes:

2 3 4DIS(R) DIS(R) DIS(R) DIS(R)

DMJ(R)DMJ(R)

1,2,3,4

1,2 3,4

1

Sharding: None

1,2

DHJ(R)

Cost:max(100,10)+5

POS

100

[1,2]

POS

200

[1,2]

Sharding:R ,R

POS

10

PSO

150

[1,2]

3,4

[1,2,4] [1,2,4] [1,2,4][1]

[1]

Global Plan

Stage 2
(Optimization)

15 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Querying Optimization & Processing - Example

SPARQL Query:
Find persons who are born in USA and won a prize..

SELECT ?person, ?city, ?prize WHERE {
R1 ?person <bornIn> ?city .

R2 ?city <locatedIn> USA .

R3 ?person <won> ?prize .

R4 ?prize <hasName> ?name . }

Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

Stage 1
(Optimization)

Exploration

Supernode Bindings:
?person : P1, P2, P4

?city : P1, P2, P4

?prize : P2, P4

Sharding: R2 ?city ?prize

?person

Cost:max(200,150)+15

Cost:max(105,215)+130

Order:

Cost:

Slaves:

Supernodes:

2 3 4DIS(R) DIS(R) DIS(R) DIS(R)

DMJ(R)DMJ(R)

1,2,3,4

1,2 3,4

1

Sharding: None

1,2

DHJ(R)

Cost:max(100,10)+5

POS

100

[1,2]

POS

200

[1,2]

Sharding:R ,R

POS

10

PSO

150

[1,2]

3,4

[1,2,4] [1,2,4] [1,2,4][1]

[1]

Global Plan

Stage 2
(Optimization)

15 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Querying Optimization & Processing - Example

SPARQL Query:
Find persons who are born in USA and won a prize..

SELECT ?person, ?city, ?prize WHERE {
R1 ?person <bornIn> ?city .

R2 ?city <locatedIn> USA .

R3 ?person <won> ?prize .

R4 ?prize <hasName> ?name . }

Summary Graph

P1 P2

P3 P4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

governor

memOf,bornIn

locIn

won,bornIn

won

locIn,

memOf

Stage 1
(Optimization)

Exploration

Supernode Bindings:
?person : P1, P2, P4

?city : P1, P2, P4

?prize : P2, P4

Sharding: R2 ?city ?prize

?person

Cost:max(200,150)+15

Cost:max(105,215)+130

Order:

Cost:

Slaves:

Supernodes:

2 3 4DIS(R) DIS(R) DIS(R) DIS(R)

DMJ(R)DMJ(R)

1,2,3,4

1,2 3,4

1

Sharding: None

1,2

DHJ(R)

Cost:max(100,10)+5

POS

100

[1,2]

POS

200

[1,2]

Sharding:R ,R

POS

10

PSO

150

[1,2]

3,4

[1,2,4] [1,2,4] [1,2,4][1]

[1]

Global Plan

Stage 2
(Optimization)

15 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Query Optimization & Processing – Example (2)

DIS(R)1
DIS(R)4

DIS(R)4DIS(R)3DIS(R)2DIS(R)1

DHJ(R)1,2,3,4

DMJ(R) 1,2 DMJ(R) 3,4

DHJ(R)1,2,3,4

DMJ(R) 3,4DMJ(R) 1,2

R2

R1,2 R3,4

DIS(R)2 DIS(R)3

P O S

(bornIn,?o,?s) (won,?o,?s)

P O S

(hasName,?s,?o)

P S O

(locIn,USA,?s) (locIn,USA,?s)

P O S

Partial Results

EP1 EP2 EP3 EP4

Partial Results

Slave 1 Slave 2

P O S

(bornIn,?o,?s) (won,?o,?s)

P O S

(hasName,?s,?o)

P S O

Stage 2: Distributed query execution

16 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Evaluation

We compared performance of TriAD with the following state-of-the-art systems

I Centralized systems – RDF-3X, MonetDB-RDF, BitMat

I Distributed systems – H-RDF-3X, Trinity.RDF, 4store, SHARD, Spark

Datasets:

I (Synthetic) LUBM 160 – 28 Million triples, 16GB raw data

I (Synthetic) LUBM 10240 – 1.8 Billion triples, 730GB raw data

I (Real world) BTC 2012 – 1.4 Billion triples, 231 GB raw data

I (Synthetic) WSDTS – 109 Million triples, 15 GB raw data

I Benchmark queries for LUBM, BTC, & WSDTS datasets

System Setup:

I TriAD, TriAD-SG is implemented in C++

I Cluster setup: 12-nodes, 48GB RAM, 2 quad-core CPUs of 2.4GHz (HT
enabled)

17 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Evaluation - Large datasets

LUBM 10240 Dataset – 1.8 Billion triples (Query Performance in milli seconds)

TriAD TriAD-SG Trinity.RDF H-RDF-3X RDF-3X

1e0

1e1

1e2

1e3

1e4

G
eo

.-
M

ea
n

(i
n

m
s)

Warm/Main-memory Cold

︸ ︷︷ ︸
Our Approach

Queries Characteristics TriAD TriAD-SG Trinity.RDF H-RDF-3X RDF-3X

Q1 Selective (6 joins) 7,631 2,146 12,648 2.3e6 1.7e5 1.9e6 1.8e6
Q2 Non-Selective(1 join) 1,663 2,025 6,018 5.3e5 4,095 2.4e5 1.8e5
Q4 Selective (5 joins) 2.1 1.3 5 166 1 243 3
Q7 Selective (6 joins) 14,895 16,863 31,214 2.3e6 2.1e5 6.5e5 46,262

18 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Summary

TriAD is a fast distributed RDF engine built on top of asynchronous communication
layer and multi-threaded execution framework

I efficient distributed and parallel join executions

I join-ahead pruning technique via graph summarization helps in pruning
dangling triples and making query processing efficient

I distributed- and join-ahead pruning aware query optimizer

I so far reported fastest runtimes over three benchmark datasets: LUBM, BTC,
WSDTS

Questions & Thank You!!

19 / 19

TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing

Summary

TriAD is a fast distributed RDF engine built on top of asynchronous communication
layer and multi-threaded execution framework

I efficient distributed and parallel join executions

I join-ahead pruning technique via graph summarization helps in pruning
dangling triples and making query processing efficient

I distributed- and join-ahead pruning aware query optimizer

I so far reported fastest runtimes over three benchmark datasets: LUBM, BTC,
WSDTS

Questions & Thank You!!

19 / 19

	TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing
	Appendix
	Next Steps

