
Index Tuning for Query-log based On-line Index
Maintenance

Sairam Gurajada
∗

Max-Planck-Institut für Informatik
Saarbrücken, Germany

gurajada@mpi-inf.mpg.de

Sreenivasa Kumar P.
Indian Institute of Technology Madras

Chennai, India
psk@cse.iitm.ac.in

ABSTRACT
The existing query-log based on-line index maintenance ap-
proaches rely on frequency distribution of terms in the static
query-log. Though these approaches are proved to be effi-
cient, but in real world, the frequency distribution of the
terms changes over a period of time. This negatively affects
the efficiency of the static query-log based approaches. To
overcome this problem, we propose an index tuning strat-
egy for reorganizing the indexes according to the latest fre-
quency distribution of the terms captured from query-logs.
Experimental results show that the proposed tuning strat-
egy improves the performance of static query-log based ap-
proaches.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Index-
ing—Indexing Methods; H.3.2 [Information Storage and Re-
trieval]: Information Storage—File Organization; H.3.3 [In-
formation Storage and Retrieval]: Information Search and
Retrieval—Search Process

General Terms: Algorithms, Performance

Keywords: Inverted File, Inverted Index, Search Engine,
Query Log

1. INTRODUCTION
Inverted indexes are an important and widely used data

structure for index maintenance in Information Retrieval
(IR) systems. They comprise of dictionary (for storing terms)
and postings lists (for storing postings of individual terms) [12].
Postings represent the information about a document for a
particular term. Based on the requirement, the postings
store information as little as document ID to as large as po-
sitional information of term in documents, term frequencies
etc. A query to an IR system is a list of terms along with
constraints. The result is a list of documents obtained by

∗The work was carried out when the author was at Indian
Institute of Technology Madras, India

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

applying the constraints in the query, which is then ordered
by a ranking method.

Based on the temporal characteristics of the document
collections, an inverted index is built either in off-line mode
or on-line mode. In off-line mode, it is assumed that the
entire document collection is known and remains static dur-
ing index construction. The final index is a single large in-
verted index. Though we get high query performance, this
approach is not applicable to the dynamic corpus of docu-
ments. On-line indexing on the other hand is designed for
such dynamic scenarios. They provide flexibility of query-
ing the index and alter the document collection during index
construction. This type of indexing is needed for the cases
where queries should be processed readily after a document
is indexed, eg., news search.

Many algorithms [1, 11, 5, 10, 8, 2, 3, 4, 6] were proposed
in the recent past to perform indexing dynamic document
collections. Recently, Gurajada et al. [7] proposed a new
selective merge-based on-line index maintenance approach
based on frequency distribution of query-logs. They main-
tain separate indexes for frequent and infrequent terms and
adopt different merge strategies. Terms are classified into
frequent and infrequent a priori using a static query-log.
The use of static query-logs has performance limits when the
frequency distribution of existing terms is altered. In addi-
tion, any new terms appearing in the new logs are treated as
infrequent and do not benefit from the index organization.
For example, the query Barrack Obama which was rarely ap-
pearing before 2008 has later became highly frequent. The
query, for instance Twitter, which is not present few years
back is now frequently queried. Such cases are inefficiently
handled by static query-log based approaches. To handle
this problem, we propose an index tuning strategy for these
approaches to address dynamic query-logs.

The central idea of the index tuning is to consider fre-
quency distribution of new query-log and identify the mis-
placed terms. The misplaced terms (called as diff-terms)
along with their postings list form a diff-term index. The
diff-term index is then handled like an other auxiliary in-
dex and added to the existing index by query-log based ap-
proaches.

The contributions of this paper are:

• We present an index tuning strategy to improve the in-
dex maintenance performance for dynamic query-logs.

• We provide a performance study of our strategy ap-
plied on existing query-log based on-line indexing ap-
proaches.



2. BACKGROUND
Here, we discuss a brief overview of the query-log based

approaches on which index tuning is applied, and the AOL
query-log analysis which forms the basis for our proposed
index tuning strategy.

2.1 Query-log based on-line indexing
In [7], authors proposed a merge based on-line indexing

approach using the frequency distribution of terms in the
query-log. The pivotal idea of query-log based approaches
is to partition the index into two: frequent-term index and
infrequent-term index, and adopt a different merge policy
for each. For partitioning the index, they proposed a hori-
zontal partitioning technique in addition to the vertical par-
titioning approach. Horizontal partitioning splits the index
using a split-point (threshold) calculated by applying pareto
principle (80-20) on frequency distribution of terms in the
query-log. Frequent terms (>split-point) along with their
postings lists form frequent-term index and the rest form
infrequent-term index.
Based on the horizontal partitioning, three query-log based

approaches are proposed in [7] - Single-split Immediate Merge,
Single-split Multi-partition, and Multi-split Indexing approach.
These three approaches follow a general paradigm used for
on-line indexing. An auxiliary index is maintained in the
main memory and continuously updated with new docu-
ments. Once the auxiliary index size reaches the allowed
quota, it is either merged with an on-disk index (with cas-
cading merges) or moved as a new partition. Query-log
based approaches are multi-partition approaches, i.e. they
result in more than one on-disk index to exist simultane-
ously. These approaches generalize the idea of Logarithmic
merge and Geometric partitioning approaches and use hori-
zontal partitioning for splitting the indexes. A brief overview
of the query-log based approaches is given below:

i. Single-split Immediate Merge
In Single-split Immediate Merge, the auxiliary index, when
it is required to be moved to disk, is merged with the index
at Partition 0. Based on user defined value of r (maximum
no. of merges allowed), the index at Partition 0 is split into
frequent-term and infrequent-term index using horizontal
partitioning. The frequent-term index is maintained using
immediate merge policy and infrequent-term index by a lazy
merge policy (a generalized logarithmic merge). This index-
ing scheme provides a high degree of query performance since
frequent-term index is a large single partitioned index. How-
ever, the index maintenance costs are expensive but better
than näıve immediate merge approach.

ii. Single-split Multi-Partition
In Single-split Immediate Merge, the advantages of using
lazy merge policy for the large infrequent-term index are
shadowed by the use of very expensive immediate merge
policy for frequent-term index. This limits the Single-split
immediate merge policy from providing better trade-off be-
tween index maintenance costs and query performance. Single-
split Multi-partition overcomes this problem by adopting an
incremental multi-partition active merge policy (a general-
ized geometric partitioning) for maintaining frequent-term
index. This indexing approach achieves a much better trade-
off than the one offered by Single-split immediate merge.

Figure 1: Graph representing overlap rate of AOL
query-log from May 2001 to April 2002[1]

iii. Multi-split Indexing
Although Single-split multi-partition provides a better trade-
off and performs better than Geometric partitioning, there
are some short comings with this approach. For instance,
terms those fall below the split-point are treated identically
to the terms that rarely appear in query-log. Similarly,
terms that just crossed the split-point enjoy an expensive
merge policy. This impacts the performance of single-split
multi-partition both in index maintenance via first instance
and query performance through second instance. To over-
come this, multi-split indexing leverages the power law dis-
tribution of term frequencies and recursively defines multiple
split-points. Multi-split on-disk indexes are the result of ap-
plying recursive horizontal partitioning better represented
by an index tree. This approach achieves a better trade-off
than Single-split multi-partition approach.

2.2 AOL query-log analysis
G Pass et al. [9] performed analysis over AOL query-

log and presented some temporal characteristics of queries.
They used two measures Overlap rate and Correlation Co-
efficient to analyse the query-logs from May 2001 to April
2002. Their findings1 in Figure 1 shows that the percentage
overlap of queries in two different query-logs decreases with
time. The overlap rate on average for consecutive months is
0.905, consecutive quarters is 0.833, consecutive semi-yearly
is 0.795. For the whole year only 20 − 30 % of all unique
queries survive, and the longer a query survives the more
likely it survives in future logs. This suggests that the use
of static query-log for index maintenance is inefficient and
index tuning is essential to make query-log based approaches
efficient.

3. INDEX TUNING
Index Tuning refers to transformation of the existing in-

dex into a new index. The new index incorporates the
changes to the term frequencies observed in the new query-
log. Index tuning is a three step process: 1) Identifying the
diff-terms, terms whose frequency is changed, 2) Building a
diff-terms index for diff-terms, and 3) Merging the diff-terms
index with the existing on-disk index.

Identifying the diff-terms: The first step in the index
tuning process is to identify diff-terms. We define a diff-log,
which comprises of the terms whose frequencies had changed

1Query-Log Analysis, www.ir.iit.edu/∼abdur/publications
/QueryResearch.pdf



Algorithm 1: IndexTuning(onDiskIndexroot, diffLog)

begin1
for each term in diffLog do2

pList ← extractPostings(onDiskIndexroot,term);3
addList(diffTermIndex,pList);4

InsBlock(onDiskIndexroot, diffTermIndex) ;5

end6

from old query-log to the new query-log. Since over a time
span, a large number of terms have frequency changes, it is
inefficient to consider all of them to be recorded into diff-log
for index tuning. Instead, we record only the terms which
are mis-classified according to new log, i.e we take the new
query-log and compute the new thresholds based on 80-20
principle. Mis-classified terms (or diff-terms) are the terms
which are infrequent in old query-log and frequent in new
query-log or vice-versa.
Building diff-term index: After the diff-terms are iden-

tified, the next step is to build a diff-term index. During the
diff-term index construction, the postings list of the terms
are extracted from the existing on-disk index and grouped
together to form the diff-term index. Extracting the postings
list for a term is similar to querying the term, this involves
traversing through all the indexes for collecting its postings.
Every time a postings list for a term is extracted from an
index, the postings are not deleted immediately, but they
are copied and marked as delete for efficiency purpose. The
final postings list for a term is the concatenation of all the
identified postings. This list is added to the diff-term index.
Merging the diff-terms index with on-disk index:

The final step involved is to merge the diff-term index with
the existing on-disk index. The merging step is similar to
the merging of an auxiliary index with the on-disk index.
The diff-term index is first merged with the on-disk index
at partition 0, which can trigger cascading merges. Before
invoking the merging process, the split-points (threshold)
are updated to the new split-points that are obtained from
the new query-log using the 80-20 % split principle.
Algorithm 1 describes the general index tuning approach.

For each term in the computed diff-log, first its postings are
extracted from the on-disk index and the term along with its
postings are added to the diff-term index. After processing
all the terms in diff-log, the final diff-term index is merged
with existing on-disk index (by the InsBlock() described
in [7]). Since the three query-log based approaches follow
different merging schemes, they result in different costs for
index tuning mainly influenced by the extraction process
costs.

Extraction in Single-split approaches
Algorithm 2 describes the process of extracting the postings
for a given term term. First the term’s frequency is obtained
from old query-log and compared with the split-point. If the
term is frequent, all the frequent-term indexes are queried,
otherwise infrequent-term indexes are queried for extract-
ing postings. For efficiency reasons, extracting postings list
operation does not delete the postings but marks them as
deleted in the partitions which contain the term. Subse-
quently during the merge phase, the postings are deleted in
those partitions which participate in merging.

Algorithm 2: extractPostings(onDiskIndexroot, term)

begin1
// For Single-split approaches;2
node ← onDiskIndexroot;3
if frequent(term) then4

// For SSIM, sizeOf(frequentIndexesList) is 1;5
for each index in frequentIndexesList do6

pList ← extract(frequentIndex, term);7

else8
for each index in inFrequentIndexesList do9

pList ← extract(index, term);10

return pList;11

end12

Algorithm 3: extractPostings(onDiskIndexroot, term)

begin1
// For Multi-split approach;2
node ← onDiskIndexroot;3
if node is NULL then4

return NULL;5

pList ← extract(node,term);6
if frequent(term) > nodeThreshold then7

pList ← concat(pList,extractPostings(node→right);8

else9
pList ← concat(pList,extractPostings(node→left);10

end11
return pList;12

Extraction in Multi-split approaches
Multi-partition approaches maintain the indexes that are
represented by an index tree. Extraction, similar to query-
ing, is a recursive binary search over the index tree. After
extracting the postings list at a node, if the term’s frequency
is greater than node’s split-point value the extraction contin-
ues over right sub-tree otherwise left sub-tree partitions are
considered. Since the average query times for multi-split
approaches are slightly expensive compared to Single-split
multi-partition approaches, the index tuning costs also fol-
low the same pattern. The algorithm for extracting postings
list for a term is presented in Algorithm 3.

4. PERFORMANCE STUDY
Datasets: For our performance study of index tuning

strategy applied over the three query-log based on-line in-
dexing approaches, we used Wikipedia2 collection of 85GB
containing 7 million documents. The average size of the doc-
ument in the collection is around 12KB. For evaluating the
query performance, we used AOL query-log containing 1.2
million terms. For the performance study of index tuning
approaches, we generated a synthetic query-log from AOL
query-log. The synthetic query-log is generated by taking all
the queries from the original query-log and changing their
frequency of occurrence. For our test purpose, we made
20% of random queries change from frequent to infrequent
or vice-versa. From the synthetic log, we computed the diff-
log, that contains only the terms which are frequent in old
query-log and infrequent in new query-log or the terms which
are infrequent in old query-log and frequent in new log.

We performed the evaluation of index tuning over three on
line indexing approaches: 1) Single-split Immediate merge

2http://static.wikipedia.org



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

Ti
m

e 
(s

)

Tuning Strategy

Index Tuning Cost

Multi Split
Single-split Multi-partition

Single-split Immediate 

Figure 2: Index tuning costs for three on-line index-
ing approaches

2) Single-split Multiple Partition approach and 3) Multi-
partition approach. In the performance study, we evaluated
the time taken for tuning the existing on-line index into
a new one which is based on the new query-log, and also
compared the average time taken for each query in old index
and new index.
Figure 2 shows the evaluation of the index tuning costs for

the three approaches. Here, one can observe that the index
tuning costs for Single-split Immediate merge index is lower
compared to the other approaches. This is because, the ex-
traction of postings from an index for a term is proportional
to the querying time taken for that term. For our test case,
we observed that index tuning cost for Single-split Immedi-
ate Merge is 7% less of the Single-split Multiple Partition
approach and 25% less of the Multi-split Indexing approach.
The evaluation query times after the index tuning for the

three approaches is shown in Figure 3. Here, we can ob-
serve that the new query times are almost same for all the
three approaches. This is because, we have taken only the
diff-log queries for evaluation. Since all the diff-log terms
form a single index after index tuning and merged with
the existing on-disk index, we have the same query time
for diff-terms with respect to all the approaches. But this
will change once the usage of on-line indexing is resumed.
From our experimental study, we observed a significant im-
provement in query performance. For Single-split Immedi-
ate merge (SSIM) the query performance is improved by
58%, for Single-split Multiple Partition approach (SSMP)
the improvement is by 61%, and for Multi-split approach
the improvement is by 64%.

5. CONCLUSIONS
In this paper, we propose an index tuning approach for

query-log based on-line index strategies. The proposed ap-
proach overcomes the problems faced by query-log based
approaches with dynamic query-logs. We exploit the fre-
quency distribution of query-logs to compare and identify
the terms that are inefficiently handled in the existing index
and use a tuning approach to reorganize the existing index.
Index tuning cost for a query-log based approach is directly
proportional to its query costs. As index tuning reorganizes
the existing index, it substantially improves the query per-
formance for the terms which are inefficiently handled before
by query-log based approaches. Thus, the use of index tun-

 0

 10

 20

 30

 40

 50

 60

MP SSP SSPIM

Ti
m

e 
(m

s)

Tuning Strategy

Query Performance

OldQP
NewQP

Figure 3: Query performance after index tuning

ing helps in improving the performance of query-log based
approaches and make them viable to dynamic changes in
query-logs.

6. ACKNOWLEDGEMENTS
We would like to thank Max-Planck-Institut für Infor-

matik, Saarbrücken, Germany for their generous support.

7. REFERENCES
[1] E. W. Brown, J. P. Callan, and W. B. Croft. Fast incremental

indexing for full-text information retrieval. In VLDB ’94,
pages 192–202, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[2] S. Büttcher and C. L. A. Clarke. Indexing time vs. query time:
trade-offs in dynamic information retrieval systems. In CIKM
’05: Proceedings of the 14th ACM CIKM, pages 317–318,
New York, NY, USA, 2005. ACM.

[3] S. Büttcher, C. L. A. Clarke, and B. Lushman. Hybrid index
maintenance for growing text collections. In In SIGIR 2006:
Proceedings of the 29th annual international ACM SIGIR,
pages 356–363, 2006.

[4] T. Chiueh and L. Huang. Efficient real-time index updates in
text retrieval systems. Technical report, Experimental
Computer Systems Lab, Department of Computer Science,
State University of New, 1998.

[5] D. Cutting and J. Pedersen. Optimization for dynamic
inverted index maintenance. In SIGIR ’90: Proceedings of the
13th annual international ACM SIGIR, pages 405–411, New
York, NY, USA, 1990. ACM.

[6] R. Guo, X. Cheng, H. Xu, and B. Wang. Efficient on-line index
maintenance for dynamic text collections by using dynamic
balancing tree. In CIKM ’07: Proceedings of the sixteenth
ACM CIKM, pages 751–760, New York, NY, USA, 2007. ACM.

[7] S. Gurajada and S. K. P. On-line index maintenance using
horizontal partitioning. In Proceeding of the 18th ACM
CIKM, CIKM ’09, pages 435–444, New York, NY, USA, 2009.
ACM.

[8] N. Lester, A. Moffat, and J. Zobel. Fast on-line index
construction by geometric partitioning. In CIKM ’05:
Proceedings of the 14th ACM CIKM, pages 776–783, New
York, NY, USA, 2005. ACM.

[9] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search.
In InfoScale ’06: Proceedings of the 1st international
conference on Scalable information systems, page 1, New
York, NY, USA, 2006. ACM.

[10] I. M. Strategies, N. Lester, J. Zobel, and H. E. Williams.
In-place versus re-build versus re-merge:. In In Proceedings of
the 27th Conference on ACS, pages 15–23. Society, Inc, 2004.

[11] A. Tomasic, H. Garćıa-Molina, and K. Shoens. Incremental
updates of inverted lists for text document retrieval. In
SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD, pages
289–300, New York, NY, USA, 1994. ACM.

[12] I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes
(2nd ed.): compressing and indexing documents and images.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1999.


