
On-line Index Maintenance Using Horizontal Partitioning

Sairam Gurajada Sreenivasa Kumar P

Indian Institute of Technology Madras
Chennai - 600036

{sairam,psk}@cse.iitm.ac.in

ABSTRACT
In this paper, we propose a new merge-based index mainte-
nance strategy for Information Retrieval systems. The new
model is based on partitioning of the inverted index across
the terms in it. We exploit the query log to partition the
on-disk inverted index into two types of sub-indexes. In-
verted lists of the terms contained in the queries that are
frequently posed to the Information Retrieval systems are
kept in one partition, called frequent-term index and the
other inverted lists form another partition, called infrequent-
term index. We use a lazy-merge strategy for maintaining
infrequent-term sub-indexes, and an active merge strategy
for maintaining frequent-term sub-indexes. The sub-indexes
are also similarly split into frequent and in-frequent parts.
Experimental results show that the proposed method im-
proves both index maintenance performance and query per-
formance compared to the existing merge-based strategies.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Index-
ing—Indexing Methods; H.3.2 [Information Storage and Re-
trieval]: Information Storage—File Organization; H.3.3 [In-
formation Storage and Retrieval]: Information Search and
Retrieval—Search Process

General Terms: Algorithms, Performance

Keywords: Inverted File, Inverted Index, Search Engine,
Query Log

1. INTRODUCTION
Inverted Index is an important data structure used in

many Information Retrieval (IR) systems. A list of terms,
with their postings list comprises the inverted index. A
term’s postings list is a sequence of nodes, where each node
contains the docID of the document containing the term,
and a list of positions of the term in the document. In gen-
eral, a query to an IR system is a list of terms along with
constraints. The result is a list of documents obtained by
applying the constraints given in the query, which is then or-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

dered by a ranking method. While processing a query, the
IR system has to retrieve the postings list from index for
every query term. The length of the postings list retrieved
can vary depending on how the documents are sorted. If
they are sorted based on the increasing document IDs, the
IR system has to retrieve entire postings list. If they are
sorted based on the impact order, then only top-k postings
of the term’s posting list are retrieved. Witten et al. [17]
gives an introduction to inverted lists, query modes, and
ranking methods.

The off-line indexing approach deals with handling static
document collection. During the indexing process, the doc-
ument collection is unchanged and the queries are handled
only after the entire index is built. Off-line indexing has
been addressed in the past and efficient strategies were pro-
posed [8].

On the other hand, the on-line indexing approach handles
dynamic document collection. Any on-line indexing strategy
has a capability to modify its index according to the doc-
uments that are being added to or deleted from document
collection, and the queries are processed while the index-
ing is being performed. This type of indexing is needed for
the cases where queries should be processed readily after a
document is being indexed, eg., news search.

Many algorithms were proposed in the recent past to per-
form indexing dynamic document collections. Initially [2,
6, 16] addressed the problem of on-line indexing. A decade
after, Lester et al. [14] readdressed the problem and gave
a comparative study of three basic approaches: In-place,
Re-Merge, and Re-Build, and showed that In-place and Re-
merge outperform Re-build in all cases. Lester et al. [9],
and Büttcher et al. [4] proposed a new merge-based strategy
where they trade-off query performance with index mainte-
nance performance by having a controlled merging of on-disk
sub-indexes. Tomasic et al. [16], and Büttcher et al. [4] pro-
posed an hybrid approach and showed that performance of
retrieval system is improved when the short length postings
lists are handled using merge-based strategy and long length
postings lists by In-place strategy. The methods for handling
the document deletion in the on-line indexing environment
are discussed in [3, 5, 7].

The systems that handle dynamic collections are called
Dynamic Information Retrieval systems, where they effi-
ciently process document insertions and deletions, and si-
multaneously serve query requests. These systems process
every query as a new and independent one. In real world,
the documents that are added to the document collection
are not repeated, whereas the queries are repeated. Gener-

435

ally, queries that cover broad topics occur more frequently.
For example, consider two queries Information Retrieval and
On-line Index, the former query appears more frequently
than later. And the individual terms Information, Retrieval,
On-line, and Index are very frequently present in queries
compared to the original queries. For a given query, the IR
system’s retrieval performance depends on its index parti-
tioning strategy; i.e., the number of partitions to be read to
build entire postings lists for the terms of the given query.

In this paper, we propose a new merge-based on-line in-
dexing strategy, where the on-disk index is composed of
frequent-term and infrequent-term sub-indexes. A frequent-
term sub-index consists of high frequency query terms, and
an infrequent-term sub-index consists of low frequency query
terms. We employ different merge strategies for maintaining
frequent and infrequent sub-indexes. A lazy merge strat-
egy for infrequent sub-indexes improves index maintenance
performance, and an active merge strategy for frequent sub-
indexes improves query performance.

Alternatively, the query performance of an IR system can
be improved by using an index cache that holds the postings
lists of few frequently occurring query terms. Although such
approach improves query performance, it incurs additional
cost for cache index update, along with the main index up-
date, whenever a new document containing high frequency
terms is added to the IR system. The proposed merge-based
on-line indexing strategy overcomes such overhead.

The rest of the paper is organized as follows: Section
2 gives background and related work on various indexing
strategies, including details on merge-based and in-place
strategies for on-line indexing. In Section 3, we explain our
proposed Horizontal Partitioning approach for efficient on-
line index maintenance. Section 4 gives a performance study
of our approach and the state-of-the-art on-line indexing ap-
proaches. We conclude in Section 5.

2. BACKGROUND AND RELATED WORK
This section gives a brief background on the general method

of off-line indexing approach, and an overview of work done
in the recent past on dynamic information retrieval systems.

2.1 Off-line Indexing
As described in the previous section, the off-line index-

ing techniques are implemented to process static document
collections. The indexing process starts by tokenizing the
input documents forming a list of <term,doc> pairs. The
list is sorted lexicographically across terms. All the pairs
that have the same term are merged to form a list of docs
for each term. All the process is carried out in main-memory
if the document collection can be processed in main mem-
ory. If the document collection is too large to process in
the main-memory, it is split into smaller collections of man-
ageable sizes, which could then be easily processed in the
main-memory. An inverted index is built for each smaller
document collection. All these indexes (sub-indexes) are
later merged to form the final index using a multi-way merge
approach.

Query performance is the main motive behind merging
a group of sub-indexes into single large index. In general,
query to an index triggers an operation of preparing a con-
tiguous postings list for each query term. But, if the term’s
postings are scattered across multiple locations, its retrieval
requires many disk seeks, thus reducing the query perfor-

Term1

Term1

Term2

Term2

Term1 Term2

(a)

(b)

(c)

Figure 1: In-place update strategy. (a) represents
the new postings lists of in-memory index. (b) rep-
resents state of on-disk inverted index. (c) repre-
sents in-place update with relocation for Term2 and
no relocation for Term1.

mance. In this regard, off-line index provides a very high
query performance by building a single large inverted index
containing contiguous postings list for each term, but at the
cost of having to build the index prior to handling queries.

2.2 On-line Indexing
On-line indexing techniques are implemented to provide

the capability of handling various index operations simulta-
neously. The operations include adding new documents to
index, deleting existing documents from index, and serving
query requests. On-line index consists of two parts: one re-
sides in main-memory (also called in-memory index), and
the other resides on disk. When a new document is added,
the in-memory index is updated at first. And as the in-
memory index grows, and eventually becomes too big to fit
the specified size in the main memory, it will be moved to
the disk using one of the three strategies: i) Re-build, ii)
In-place, and iii) Re-merge.

Re-build
In Re-build indexing model, whenever the in-memory part
of index exceeds the size limit, a new index is rebuilt from
the scratch for the entire document collection. The existing
index is used for processing queries, and then discarded once
the new index is available for querying. Lester et al. [14]
experimentally show that re-build strategy is less efficient
than in-place and re-merge models in all non-trivial cases.
Though the Re-build model is a very simple and inefficient
on-line indexing approach, it is still used widely for its higher
query performance.

In-place Update
While moving in-memory index on to the disk using in-place
update technique, the postings of terms in in-memory index
are appended to those of terms in on-disk index. Unlike
re-build indexing model, this strategy avoids rebuilding of
entire index from scratch. To avoid relocation of term’s ap-
pended posting list, the on-disk index usually has a over-
allocation of space for each term to accommodate future
postings. If the term’s over-allocation is exhausted, its in-
memory postings list and on-disk postings list are concate-
nated, and then moved to a new location on the disk. Over-
allocation strategy incurs some space overhead, but reduces
the expensive frequent relocations of concatenated lists.

436

1 11

1 1 1 1 1 1 1 11

2

2

0

1

3

Partition

1 1 1 1 1 1 1 11

2 2 2 2

4 4

8

3

2

6

2 3

9

9

33

2

(b)

(a)

Generation

1

3

4

Figure 2: Multi-partition Strategies. (a) Overview
of Geometric Partitioning with r = 3. (b) Overview
of Logarithmic Merge (k = 2). The dashed nodes
represent intermediate sub-indexes formed while
merging.

An ineffective over-allocation strategy may result in poor
update performance. For example, small over-allocations
may cause frequent relocation of terms’ concatenated lists,
and large over-allocations may cause space overhead. To
tackle this problem, Shoens et al. [13] (and also Shieh et
al. [12]) proposed a predictive over-allocation strategy for
improving the performance of In-place indexing model. And
Lester et al.[10] proposed another solution by maintaining
an inverted file for each term. However, the problem of
fragmentation is left to the file system.

An illustration of In-place update is shown in Figure 1.
Part(a) represents the new postings lists of in-memory in-
dex for Term1 and Term2. And part (b) represents state of
on-disk inverted index. When Term1 and Term2 are moved
to disk, an attempt is made to fit them into over-allocation
space. Here, Term1’s new postings list can be easily fit into
the over-allocation space, so it doesn’t require relocation,
whereas Term2’s new postings list can’t be fit, so it is re-
located. Part (c) shows In-place update with relocation for
Term2 and no relocation for Term1.

Merge-based Update
Merge-based strategies maintain two indexes, one that is in
main memory and the other resides on disk. When the in-
memory index exceeds its limit, it is merged with on-disk
index. The simplest form of merge-based update is Immedi-
ate Merge, described by Cutting et al. [6]. In this approach,
only one on-disk inverted index exists. Here, the in-memory
index is merged with existing on-disk inverted index form-
ing a new index which replaces the existing one. Immediate
Merge achieves high query performance because the on-disk
index has contiguous postings list. But this approach re-
quires high index maintenance cost as the entire on-disk in-
dex is read from the disk for each merge event. Results from
Lester et al. [14] show that Immediate Merge outperforms
in-place indexing technique in all practical scenarios, despite
its high cost merge event.

Later, multi-partition merge strategy was proposed [9, 16],

where more than one sub-index exist on the disk simultane-
ously. A sub-index is also an inverted index, but has only
partial postings for the terms. A group of sub-indexes com-
prise an on-disk index. Since multi-partition strategies re-
quire few merge events, they achieve higher index mainte-
nance performance compared to single partition strategies.
But, the query performance of multi-partition strategies get
degraded because of the scattering of postings list across
multiple partitions.

In 2005, Lester et al. [9] proposed a merging strategy
called Geometric Partitioning technique based on the multi-
parti-tioning approach. Like other merge-based strategies,
Geometric Partitioning employs a temporary in-memory in-
dex and persistent on-disk index. The in-memory index is
moved on to the disk by cascading merges of it with the
on-disk sub-indexes.

In Geometric Partitioning, each partition of the on-disk
index contains a sub-index, whose size is less than maximum
sub-index size defined for that partition. Here, the defined
partitions form a geometric sequence over their maximum
sub-index sizes, and the geometric ratio for this sequence is
r. The geometric ratio r is defined such that, if the max-
imum sub-index size at kth partition is S, then maximum
sub-index size at (k + 1)th partition is rS. Partition 0 is
reserved for in-memory index block. When the in-memory
index at partition 0 of size S is full, it’s merged with the
sub-index at partition 1. If the sub-index held at partition 1
reaches it maximum size of (r−1)S then it is either moved to
or merged with the sub-index at partition 2. The sub-index
from partition 1 is merged with sub-index at partition 2 un-
til the size of the sub-index at partition 2 reaches (r− 1)rS,
in which case the sub-index at partition 2 is moved to par-
tition 3. To generalize, a sub-index at partition k is merged
with sub-index at partition k + 1 until the size of sub-index
at partition k reaches its maximum size (r − 1) ∗ rk−1S. At
any instant, the size of the sub-index at partition k can be
expressed as

irk−1 for 0 ≤ i < r (1)

The geometric merge operation is shown in Figure 2(a).
The first in-memory sub-index of partition 0 is moved to
partition 1. The next in-memory index from partition 0 is
merged with sub-index at partition 1, now partition 1 holds
the sub-index of size 2S, where S is size of in-memory index.
For the third in-memory index, it is merged with the sub-
index at partition 1. Now the sub-index at partition 1 has
exceeded its maximum limit (r−1)S, i.e 2S. So, the merged
sub-index is moved to partition 2. The handling of next in-
memory blocks is shown in Figure 2(a).

Büttcher’s Logarithmic Merge [3] is similar to Geometric
partitioning technique. In Logarithmic Merge, every sub-
index is given a unique number g, called generation number.
A sub-index is said to be of generation g+1, if it is created by
merging all the sub-indexes of generation g. In Logarithmic
Merge, when the in-memory index is moved on to the disk, it
is given a generation number 0. A merge event is triggered if
more than one sub-index with the same generation number g
form a sub-index of generation g+1. This leads to creation of
sub-indexes whose sizes are exponentially increasing. At any
instant, the maximum number of sub-indexes forming the
inverted index for the collection is logarithmic of N, where
N is number of in-memory blocks created so far. The similar

437

Figure 3: AOL Query log analysis: Cumulative
Query Usage; obtained from technical report2.

idea of logarithmic merge was implemented in LUCENE [1]
by D. Cutting.

Figure 2(b) describes logarithmic merge. The first in-
memory block, while moving to disk, is given generation
number 1. When the next in-memory block arrives, it is
also given generation number 1. Since two sub-indexes are
of generation 1, they are merged to form a sub-index whose
generation number is 2. When next in-memory block ar-
rives, it is given generation number 1. Since there exist no
sub-indexes of the same generation, no merge events occur.
The process of handling the next few in-memory indexes are
shown in Figure 2(b).

Strohman et al. [15] described an approach using splitting
of terms into frequent and infrequent classes, based on their
frequencies in the document collection. They proposed that
keeping the frequent terms vocabulary information in main
memory can decrease the latency of indexing documents. In
contrast to this method, the approach proposed in this paper
classifies terms into frequent and infrequent classes based on
their frequency in typical query log. With this approach, the
real-world queries can be handled more efficiently.

3. PROPOSED WORK
Merge-based strategies perform on-disk index updates by

merging it with in-memory index. Whereas, the in-place
strategy updates only those terms that have new postings in
the in-memory index, with the cost of expensive relocations.
Both of these on-line approaches trade-off between index
maintenance performance and query performance. Gener-
ally, query consists of one or more terms, and the query
performance is determined by the time taken to retrieve the
postings list for each query term. We often observe that
a small subset of queries occur frequently in a set of real-
world queries. If the queries are broken down into individual
terms, the frequency of terms will further increase. G Pass
et al. [11] made an analysis on real-time AOL query log1, as
shown in Figure 3 (obtained from their technical report2.) It
presents the relationship between number of unique queries
and cumulative query frequency. Here, the cumulative query
frequency gives the percentage of the query log that gives
rise to the specific set of unique queries. For example about
1/3rd of queries comprise nearly 80% of the query log. Thus,
the performance of IR system can be largely improved by
tuning the index to handle frequent queries efficiently.

1http://research.aol.com, At present inactive.
2Query Log Analysis, www.ir.iit.edu/∼abdur/publications
/QueryResearch.pdf

T1

T3

T5

T6

T7

T9

T8

T2

T4

T1

T4

T6

T5

T7

T8

T9

T3

T2

Po
st

in
g

L
is

ts

T
er

m
s

= Frequent Term

= Infrequent Term

Figure 4: Horizontal Partitioning applied on an
index to split into frequent and infrequent sub-
indexes.

3.1 Horizontal Partitioning
On-line indexing follows the general approach of Vertical

Partitioning, where the terms’ postings lists are split into
multiple partitions, each containing a sub-index. Here, the
terms get shared across the sub-indexes. Additionally, we
propose Horizontal Partitioning approach, in which, the ba-
sic partitioning strategy is to split the index into two sub-
indexes. In this approach, the terms do not get shared across
the sub-indexes. In our work, we adopted a partitioning ap-
proach based on the frequency of terms derived from the
query log. High-frequency terms form the frequent-term
sub-index, and low-frequency terms form the infrequent-
term sub-index. Figure 4 shows the basic Horizontal Parti-
tioning applied on an index containing terms T1 to T9. The
index is split into frequent-term sub-index having terms: T2,
T4, & T8, and infrequent-term sub-index having terms: T1,
T3, T5, T6, T7, & T9.

The main advantage of Horizontal Partitioning is that we
can adopt more than one merge strategy for sub-indexes,
and maintain them independently. The frequent-term sub-
indexes are maintained with merge strategy that attains bet-
ter query performance, for efficiently serving high-frequency
queries. And the infrequent-term sub-indexes are main-
tained with merge strategy that attains better index update
(maintenance) performance. By utilizing horizontal parti-
tioning approach, we can achieve an overall higher index
maintenance performance and higher query performance.

3.2 Index Maintenance
In our approach, the index is maintained by employing an

active merge approach for frequent-term sub-indexes, and a
lazy merge approach for infrequent-term sub-indexes. In ac-
tive merge approach, the sub-indexes are frequently merged
to reduce the number of on-disk sub-indexes to improve the
query performance. But, in lazy merging approach, the sub-
indexes are less frequently merged to save the cost of merg-
ing, which inturn gives a good update performance. An ex-
ample of active merging is the geometric partitioning strat-
egy: “varying r fixed p approach”, mentioned in [9].

For lazy merging, we adopted a variant of logarithmic
merge approach. The logarithmic merge proposed by Büttcher

438

= In−memory Index = On−disk Sub−index

(a)

(b)

21 3
Partitions Partitions

Partitions Single
Partition

Frequent term IndexIn−frequent term Index

Lazy Merge Immediate Merge

123

3 2 1

k=4 k=3

r=2 r=3 r=4k=2k=3k=4

k=2

In−frequent term Index Frequent term Index

Lazy Merge Active Merge

Figure 5: An overview of (a) Single-split Imme-
diate Merge approach, and (b) Single-split Multi-
partition approach.

et al. [4] constraints the number of sub-indexes, with same
generation number, to be 2. Generalizing this, a logarith-
mic merge with constraint k allows k sub-indexes of the same
generation number to exist simultaneously, before the merge
event is triggered. A constraint k logarithmic merge does
more number of merges than constraint k + 1 logarithmic
merge. So, constraint k + 1 logarithmic merge is lazier and
gives higher index maintenance performance compared to
constraint k logarithmic merge. Inversely, the constraint k
logarithmic merge results in lesser number of sub-indexes
compared to constraint k + 1 logarithmic merge, thereby
giving better query performance. Therefore, the lazier the
merge approach is, the higher its index maintenance perfor-
mance and lower its query performance.

Based on the idea of horizontal partitioning, we propose
two indexing strategies: 1) Single-split indexing, and 2)
Multi-split indexing approaches.

3.2.1 Single-split indexing approach
In this approach, we perform one-level splitting of the

index into frequent-term sub-indexes and infrequent-term
sub-indexes. As described in previous sections, we maintain
these sub-indexes using different merge strategies.

The infrequent-term sub-indexes are spread across multi-
ple partitions, and are maintained by lazy merge approach.
Here, we adopted a variation of logarithmic merge with vari-
able constraint k, where the value of k increases with the

number of partitions, i.e., at partition p, we allow k sub-
indexes of the same generation number to exist simultane-
ously, and we allow k + 1 sub-indexes at partition p + 1.
For example, for partition 0, if we have two (k = 2) sub-
indexes, then for partition 1, we will have three (k = 3)
sub-indexes, and so on. By increasing k as partition number
increases, we can achieve lazy merging of infrequent-term
sub-indexes; thereby improving the overall index mainte-
nance performance.

Here, we define two Single-split indexing approaches: 1)
Single-split Immediate Merge, and 2) Single-split Multi-part-
ition.

Single-split Immediate Merge
In Single-split Immediate Merge, the infrequent-term sub-
indexes are maintained using Lazy merge approach, as de-
scribed in the previous paragraph. The frequent-term sub-
indexes are maintained in a single partition using Imme-
diate Merge approach. This provides high query perfor-
mance, but results in poor index maintenance performance.
However, the index maintenance performance is better than
the näıve immediate merge strategy performed without hor-
izontal partitioning. Figure 5(a) represents the Single-split
Immediate Merge approach. The in-memory index is split
across terms, and merged with frequent-term and infrequent-
term indexes located on the disk.

Single-split Multi-partition
The efficiency of Single-split Immediate merge approach de-
grades when the size of the frequent-term index increases,
due to its high index maintenance cost. In such cases, the use
of multi-partition strategy for frequent-term index is a bet-
ter alternative. The multi-partition strategy provides better
index maintenance performance with a slight degradation in
query performance. A Single-split Multi-partition strategy
uses a multi-partition active merge for maintaining frequent-
term sub-indexes and a lazy merge approach for maintaining
infrequent-term sub-indexes. An active merge approach em-
ploys geometric partitioning technique, where the value of r,
geometric ratio, increases with the value of p, partition num-
ber. Figure 5(b) represents the Single-split multi-partition
merge approach. Here, the frequent-term index is main-
tained using multi-partition active merge (Geometric Parti-
tion) strategy, and the in-frequent-term index is maintained
using lazy merge.

3.2.2 Multi-split indexing
In Single-split indexing approach, the index is split into

frequent-term and infrequent-term sub-indexes. However,
as the size of these sub-indexes increases, the cost of index
maintenance will also increase. So, we devised Multi-split
indexing approach, where the sub-indexes are also similarly
split into frequent and in-frequent parts. Frequent parts are
maintained by an active merge approach, and in-frequent
parts by a lazy merge approach. Alternatively, Multi-split
indexing approach is a Single-split indexing approach ap-
plied at multiple levels of indexing process.

Index Tree
The recursive splitting of sub-indexes can be represented by
a tree like data structure, called Index Tree. The index tree
is a binary tree, where each node of the tree contains a set of
partitions, and each partition contains a sub-index. For each

439

. . . .
Partition

1
Partition Partition

Left child node

2 3

Right child node

R

P

T
P : No. of Partitions

R : No. of merges allowed
 in each partition

T : Threshold frequency

Figure 6: Internal details of a node in Index Tree.

R = 3

R = 2
R = 4

R = 3
R = 3

R = 5

P = 3
P = 1

P = 2

P = 2
P = 1

P = 1

P = 1

R = 2

Figure 7: Index Tree with root node initialized to
R = 3 and P = 1.

node there are three parameters defined: P , R, and T . Fig-
ure 6 shows a typical node structure of the Index Tree. Here,
P and R define the merge policy to be followed at each node,
where P specifies number of partitions, R specifies maximum
number of merges allowed in each partition. T specifies the
threshold value that is used to categorize frequent and in-
frequent terms. The values of P and R are initialized at the
time of creation of the node, and are kept constant over the
entire indexing process. For each partition in a node, we
have a parameter r initialized to R, at the beginning. The
parameter r specifies the number of merges allowed in the
partition before moving the sub-index to next partition.

Building the Index Tree
Initially, when the index tree is empty, a root node is created
with the values of R and P initialized to user defined values.
For each partition in the root node, the value of parameter r
is set to R. For every node, the minimum value of R is 2, and
the minimum value of P is 1. This means that, each node
has at least one partition (P = 1), and each partition has a
sub-index that handles at least two-merge events (R = 2).
Whenever the in-memory index is exhausted, it is moved on
to the disk, and merged with the sub-index held at partition
0 of the root node. When r number of merges happened
in partition 0, the sub-index is merged with the sub-index
at the next partition present in the same node, or a simple
move happens when the next partition is empty. If there
is no additional partition in the node, the sub-index is split
into frequent-term sub-index (positioned as right child) and
infrequent-term sub-index (positioned as left child). The
splitting strategy is determined by threshold T , which is
computed based on the frequency of terms occurring in the
query log. A node in an Index Tree is split after R × P
merges.

For newly created child nodes, the values of R and P are
initialized based on the values of R and P of their parent
node. The left-child nodes hold infrequent-term sub-indexes,

and right-child nodes hold frequent-term sub-indexes. As we
move down the index tree, the value of R is decremented for
left-child nodes, and incremented for right-child nodes. But,
the value of P is incremented for left-child nodes, and decre-
mented for right-child nodes. This index building strategy
enables us to follow more active merge policy for right-child
node and a lazier merge policy for left-child node than the
merge policy of their parent node.
Calculation of Frequency Threshold T: Recall that, the
index at each node is split based on the value of T, where all
terms whose frequencies above T form frequent index, while
all terms whose frequencies below T form infrequent-term
index. The value of T is calculated by recursively partition-
ing the query log into multiple sub-logs. In each partition,
a split point is defined as frequency value f such that, the
sum of frequencies of terms above f constitute 80% of the
total sum of frequencies for all terms in that partition. That
is, a split point divides the partition into low-frequency and
high-frequency parts. In short, the query log is recursively
split into multiple sub-logs based on 80-20 principle. The
value of T for a partition is equal to the value of the split
point for that partition. For example, if the value of T for
a node is assigned the frequency f , then the left-child’s T
value will be the value of split point of low-frequency parti-
tion, and right-child’s T value will be the value of split point
of high-frequency partition.

Figure 7 represents an instance of index tree. In this ex-
ample, the root node has one partition (P = 1), and the
sub-index in that partition is split after 3rd merge (R = 3).
For left-child node, the R value is decremented by 1 and
P value is incremented by 1. So, we reduce the number
of merges to reduce the cost of merge event, and increase
the number of partitions to reduce the cost of node split-
ting. This strategy gives us better index maintenance per-
formance for infrequent-term sub-indexes. For right-child
nodes, we increment the value of R, allowing more number
of merges to happen, and decrement P (minimum value of
P is 1), to reduce the number of partitions at each node.
This strategy gives better query performance for frequent-
term sub-indexes due to more number of merges and fewer
sub-indexes. For other nodes in the Index Tree, the values
of R and P are assigned accordingly.

Example: Step-by-Step Construction of Index tree
Figure 8 gives an idea of multi-split indexing algorithm for
the twelve successive in-memory block movements to disk,
to finally build an Index Tree shown in Figure 7. At each
node, the dark colored block represents the partition with
the sub-index, while the light colored block represents an
empty partition. At first, the root node is initialized with
R = 3 and P = 1, and has an empty partition. The first in-
memory index block is moved on to the root node’s empty
partition, as shown in step (1). In steps (2) and (3), the in-
memory blocks are similarly merged with sub-index at root
node. But in step (3), since R = 3, after 3rd merge, the
sub-index is split into infrequent and frequent parts. The
left-child has R = 2 and P = 2, and the right-child has
R = 4, P = 1. The infrequent part is moved to the 1st

partition of the newly created left-child, and the frequent
part to the only partition in the newly created right-child.
In steps (4) and (5), the root node is updated like in steps
(1) and (2). In step (6), the sub-index at root node is split
into frequent and infrequent parts. The infrequent part is

440

(3)

(10) (11) (12)

(7) (8) (9)

(6)(5)(4)

(1) (2)

= Filled Partition/node = Empty Partition

Figure 8: Multi-split indexing approach for twelve
successive in-memory index block insertions.

merged with the sub-index at partition 1 of left child, since
R = 2, the resulting sub-index is moved to partition 2. The
frequent part is merged with the sub-index at partition 1,
since R = 4, the resulting sub-index is placed at partition 1
of right child node replacing existing sub-index. In steps (7)
and (8), follows the similar merging like in steps (1) and (2).
In step (9), the sub-index at root node is split, and the infre-
quent part occupies the first empty partition of the left-child,
and frequent part is merged with sub-index in the right-
child. In steps (10) and (11), the new in-memory blocks are
handled accordingly as in steps (1) and (2). In step (12),
the sub-index at root node is split, and the infrequent part
is merged with sub-index at 1st partition of the left-child.
Since R of the left-child is 2, the sub-index is merged and
moved to the 2nd partition. And after merging, as there is
no new empty next partition available to hold the resulting
sub-index, the sub-index is split, and new left-child (R = 2,
P = 3) and right-child (R = 3, P = 1) are created.The
new infrequent and frequent sub-indexes are moved to the
1st partition of left-child and right-child respectively. Simi-
lar, the right-child of the root node exhausts its number of
allowed merges. It is also then split into left-child (R = 3,
P = 2) and right-child (R = 5, P = 1), and each child holds
the new frequent and infrequent sub-indexes respectively in
their first partitions.

Algorithm 1 gives the process of how an in-memory index
block (tmpIndex) is moved to disk, and merged with on-disk
index. When root is NULL, a new tree node is created, and
the in-memory index block is moved to the first partition
(root.Partition.sIndex) of the root node (lines 2–5). Other-
wise, we initialize the variable dbPartition to 1st partition
of the root node. If parameter r of the partition is greater
than 1, we merge the tmpIndex with dbIndex, where dbIndex
is the sub-index at dbPartition, if dbIndex is non EMPTY
(lines 15–17). Otherwise, the tmpIndex is just moved to
the dbIndex (lines 11–13). The value of r of the dbParition
is decremented in the both cases. If r = 1, and if there
exists next partition (i.e., dbParition.next is not NULL),

Algorithm 1: InsBlock(root, tmpIndex)

begin1
if root = NULL then2

root ← getIndexTreeNode();3
root.Partition.sIndex ← tmpIndex ;4
return root;5

dbPartition ← root.Partition;6
while dbPartition �= NULL do7

dbIndex ← dbPartition.sIndex ;8
if dbPartition.r > 1 then9

if EMPTY(dbIndex) then10
dbIndex ← tmpIndex ;11
dbPartition.r ← dbPartition.r - 1;12
return root;13

else14
dbIndex ← Merge(dbIndex,tmpIndex);15
dbPartition.r ← dbPartition.r - 1;16
return root;17

else if dbPartition.next �= NULL then18
tmpIndex ← Merge(dbIndex, tmpIndex);19
Reset(dbPartition);20
dbPartition ← dbPartition.next;21

else22
fPart, ifPart ← splitMerge(dbIndex, tmpIndex);23
Reset(dbPartition);24
root.left ← InsBlock(root.left, fPart);25
root.right ← InsBlock(root.right, ifPart);26
return root;27

end28

then the dbIndex is merged with tmpIndex, and dbParition
is assigned to dbParition.next (lines 19–21), and we continue
with the next iteration. But, if there is no next partition, we
merge dbIndex with tmpIndex, and split the new sub-index
tmpIndex in to infrequent part (ifPart), and frequent part
(fPart) (lines 23–27). For better performance, the splitting
into frequent and infrequent parts is done while processing
the merge event. The sub-indexes ifPart, fPart are recur-
sively processed.

The function Merge() takes two sub-indexes as input, and
returns merged sub-index. The function splitMerge() takes
two sub-indexes as input, merges them, and splits the merged
sub-index into frequent and infrequent sub-indexes. The
function Reset() empties the partition, and resets parame-
ter r to R.

4. PERFORMANCE STUDY
Data sets: For our experiments, we used the data set con-
taining collections from Wikipedia. The collection is freely
available3, and is often used as data set in many IR re-
lated environments because of its comparable size to TREC
GOV24. The collection size used for our experiments is
about 85GB (in uncompressed form), which contains about
7 million HTML documents. The average size of the doc-
ument in the collection is around 12KB. We computed the
term frequencies of all query terms from static AOL query
log, which is then used to implement our Horizontal Par-
titioning strategy. The query log contains over 1.2 million
unique query terms.
System setup: The experiments were conducted on Linux
(Ubuntu 7.10) PC based on Intel Core 2 Duo (2.0GHz CPU)

3http://static.wikipedia.org
4Currently, due to unavailability of GOV2 data with us, we
did not test our algorithms on TREC GOV2

441

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 20 40 60 80 100 120 140 160 180
No. of blocks

Geometric Partitioning

Single split multi−partition
Single split Immediate

Multi Split

T
ot

al
 T

im
e

(m
ill

i s
ec

s)

Figure 9: Index Maintenance performance for GP,
Multi-split, and Single-split approaches. Times rep-
resent the total time taken to move in-memory
blocks to disk

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100 120 140 160 180
No. of blocks

Geometric Partitioning

Single split multi−partition
Single split Immediate

Multi Split

A
ve

ra
ge

 T
im

e
(m

ill
i s

ec
s)

Figure 10: Index Maintenance performance for GP,
Multi-split, and Single-split approaches. Times rep-
resent the average time taken to move an in-memory
block to disk

with 1GB of RAM and 240 GB, 7200RPM SATA hard drive.
The maximum size limit for in-memory index is set to 60MB.

We implemented four variants of on-line indexing approac-
hes, and for all indexing approaches, the same document in-
sertion and querying sequence was employed. The sequence
contained 10000 queries interleaved with nearly 20000 docu-
ment insertions. Document deletions are not handled in our
experiments. Queries are drawn from the AOL query log.
To simulate the real world scenario, we chose the sample
10000 queries whose frequency distribution is similar to the
frequency distribution of queries in the AOL query-log. We
observed a significant number of query terms in AOL query
log are present in many documents in the collection taken.
As of indexing approach, no caching is explicitly performed.
We implemented our indexing approaches in LUCENE [1]
Java 2.3.2.

Experimental Results
In our experiments, we evaluated the performance of the
proposed Single-split, Multiple-split, and Geometric Parti-
tioning. In Single-split approaches, the split point T , de-
fined in Section 3, is evaluated based on 80-20% rule ap-
plied on query log. In Single-split Immediate merge ap-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180
No. of blocks

Geometric Partitioning

Single split multi−partition
Single split Immediate

Multi Split

A
ve

ra
ge

 T
im

e
(m

ill
i s

ec
s)

Figure 11: Query performance for GP, Multi-split,
and Single-split approaches. Times (in ms) repre-
sent average time taken to evaluate a query after
moving ’n’ in-memory index blocks to disk

proach, the frequent-term index is maintained using Imme-
diate merge and infrequent-term index is maintained us-
ing Lazy approach, which is a variant of Logarithmic ap-
proach described in Section 3. Like Single-split Immediate
merge approach, the infrequent-term index in Single-split
multi-partition is maintained using Lazy approach, but the
frequent-term index is maintained using an active merge ap-
proach, which is variant of variable r Geometric partitioning
approach defined in Section 3. During the experiments, the
value of r for Single-split multi-partition is initialized to 3.
For Multi-split indexing approach, we initialized the values
of parameters R, P to 3, 1. Here, we implemented the fixed
r Geometric Partitioning strategy [9], by initializing r to 3.

The graphs in Figure 9 and 10 show that the approach
of adopting different strategies for frequent-term and in-
frequent-term indexes gives higher index maintenance per-
formance compared to the existing merge-based strategies.
We observed that Single-split Immediate merge algorithm
has poor index maintenance performance, because the in-
memory block, when moved onto the disk, is immediately
merged to the on-disk index. In the proposed Single-split
multi-partition strategy, we adopted different merge strate-
gies for sub-indexes; thus improving the overall index main-
tenance performance. Here, we observed a marginal 14%
gain over Geometric Partitioning, and significant 56% gain
over Single-split Immediate merge approach. The times men-
tioned in the graph are the absolute (in Figure 9) and av-
erage (in Figure 10) times taken to move in-memory blocks
on to disk.

Multi-split merge strategy shows a better performance
than Single-split multi-partition strategy and Geometric Par-
titioning strategy. This is because, as the frequent index be-
comes larger and larger, Single-split multi-partition and Ge-
ometric Partitioning incurs higher index maintenance cost.
We observed that Multi-split approach shows higher index
maintenance performance, of about 33% gain over Geomet-
ric Partitioning, and about 22.6% gain over Single-split multi-
partition strategy.

For evaluating the query performance of each of the index-
ing approaches, we have taken a set of sample queries from
the available AOL query log itself. These sample queries
were further broken-down into individual terms, before per-
forming the index lookup. We computed the time taken

442

for each term to retrieve its postings from the index blocks.
And we repeat this process for every new in-memory index
block moved onto the disk. Figure 11 presents the query
performance of the Single-split, Multi-split and Geometric
Partitioning approaches. Here, we observed a significant
48% gain in query performance of our proposed Multi-split
indexing approach over Geometric Partitioning approach.
Similarly, there is 53% gain in query performance of our pro-
posed Single-split multi-partition approach over Geometric
Partitioning.

Although Geometric Partitioning was specifically designed
for good index maintenance performance, from our experi-
ments, we found out that our approaches perform better
both in index maintenance performance as well as in query
performance. Out of all indexing approaches, Single-split
Immediate merge offers highest query performance as it main-
tains a single large index on the disk, but poorest index
maintenance performance due to expensive immediate merges.

5. CONCLUSIONS
In this paper, we propose three on-line index maintenance

approaches for IR systems based on the idea of Horizon-
tal Partitioning of inverted indexes. The splitting criteria
used for partitioning of terms into frequent and in-frequent
is based on the frequency of terms in the query log. We use
a lazy-merge approach for maintaining the infrequent-term
index, and an active merge approach for maintaining the
frequent-term index. The index maintenance cost for main-
taining infrequent-term index, which is a large part of the
index, is substantially reduced, because of the use of lazy
merge approach. This gain compensates the slight increase
in cost for maintaining frequent-term index and thereby re-
duces the overall index maintenance cost. As the query costs
are proportional to number of partitions in the index, and
the frequent-term index has a smaller number of partitions
compared to other approaches, the query cost for terms in
frequent-term index is substantially less. Since the terms in
the frequent-term index form a large part of the query load,
the overall query costs are reduced significantly, thereby in-
creasing the query performance. Thus, the use of partition-
ing of indexes based on frequency of terms in the query log
gives a significant improvement in query performance with
low index maintenance cost.

6. REFERENCES
[1] http://lucene.apache.org.

[2] E. W. Brown, J. P. Callan, and W. B. Croft. Fast
incremental indexing for full-text information
retrieval. In VLDB ’94: Proceedings of the 20th
International Conference on Very Large Data Bases,
pages 192–202, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers Inc.

[3] S. Büttcher and C. L. A. Clarke. Indexing time vs.
query time: trade-offs in dynamic information
retrieval systems. In CIKM ’05: Proceedings of the
14th ACM international conference on Information
and knowledge management, pages 317–318, New
York, NY, USA, 2005. ACM.

[4] S. Büttcher, C. L. A. Clarke, and B. Lushman. Hybrid
index maintenance for growing text collections. In In
SIGIR 2006: Proceedings of the 29th annual
international ACM SIGIR conference on Research and

development in information retrieval, pages 356–363,
2006.

[5] T. cker Chiueh and L. Huang. Efficient real-time index
updates in text retrieval systems. Technical report,
Experimental Computer Systems Lab, Department of
Computer Science, State University of New, 1998.

[6] D. Cutting and J. Pedersen. Optimization for dynamic
inverted index maintenance. In SIGIR ’90:
Proceedings of the 13th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 405–411, New York, NY,
USA, 1990. ACM.

[7] R. Guo, X. Cheng, H. Xu, and B. Wang. Efficient
on-line index maintenance for dynamic text collections
by using dynamic balancing tree. In CIKM ’07:
Proceedings of the sixteenth ACM conference on
Conference on information and knowledge
management, pages 751–760, New York, NY, USA,
2007. ACM.

[8] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. Jour. of the American
Society for Information Science and Technology, pages
713–729, 2003.

[9] N. Lester, A. Moffat, and J. Zobel. Fast on-line index
construction by geometric partitioning. In CIKM ’05:
Proceedings of the 14th ACM international conference
on Information and knowledge management, pages
776–783, New York, NY, USA, 2005. ACM.

[10] N. Lester, J. Zobel, and H. Williams. Efficient online
index maintenance for contiguous inverted lists. Inf.
Process. Manage., 42(4):916–933, 2006.

[11] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In InfoScale ’06: Proceedings of the 1st
international conference on Scalable information
systems, page 1, New York, NY, USA, 2006. ACM.

[12] W.-Y. Shieh and C.-P. Chung. A statistics-based
approach to incrementally update inverted files. Inf.
Process. Manage., 41(2):275–288, 2005.

[13] K. Shoens, A. Tomasic, and H. Garćıa-Molina.
Synthetic workload performance analysis of
incremental updates. In SIGIR ’94: Proceedings of the
17th annual international ACM SIGIR, pages
329–338, New York, NY, USA, 1994. Springer-Verlag
New York, Inc.

[14] I. M. Strategies, N. Lester, J. Zobel, and H. E.
Williams. In-place versus re-build versus re-merge:. In
In Proceedings of the 27th Conference on Australasian
Computer Science, pages 15–23. Society, Inc, 2004.

[15] T. Strohman and W. B. Croft. Low latency index
maintenance in indri. In Proceedings of the Open
Source Information Retrieval Workshop, pages 7–11,
2006.

[16] A. Tomasic, H. Garćıa-Molina, and K. Shoens.
Incremental updates of inverted lists for text
document retrieval. In SIGMOD ’94: Proceedings of
the 1994 ACM SIGMOD international conference on
Management of data, pages 289–300, New York, NY,
USA, 1994. ACM.

[17] I. H. Witten, A. Moffat, and T. C. Bell. Managing
gigabytes (2nd ed.): compressing and indexing
documents and images. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1999.

443

