
Distributed Set Reachability

Sairam Gurajada∗ and Martin Theobald†

∗Max-Plack Institute for Informatics, †University of Ulm

Germany

SIGMOD 2016, San Francisco, USA

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

d

dd

e

b

fr

a

a

c

g

g

i

l

l

kh

u

n

m

p

q

qq

v

o

Graph GGraph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G

Set Reachability. S T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G

Distributed Set Reachability 2

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

d

dd

e

b

fr

a

a

c

g

g

i

l

l

kh

u

n

m

p

q

qq

v

o

Graph GGraph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G

Set Reachability. S T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G

Distributed Set Reachability 2

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

dd

d

e

b

fr

a

a

c

g

g

i

l

l

kh

u

n

m

p

qq

q

v

o

Graph G

Graph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G [SABW13, YCZ10]

Set Reachability. S T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G

Distributed Set Reachability 2

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

d

d

d e

b

fr

aa c

gg i

ll

kh

u

n

m

p

q

q

q

v

o

Graph G

Graph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G [SABW13, YCZ10]

Set Reachability. S T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G [TKC+14, GA13]

Distributed Set Reachability 2

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

d

d

d e

b

fr

aa c

gg i

ll

kh

u

n

m

p

q

q

q

v

o

Graph G

Graph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Distributed Reachability. s t, find if there exists a path from s to t in G
[FWW12]

Distributed Set Reachability. S T , finds all pairs 〈s, t〉, such that s ∈ S,
t ∈ T and s t in G [?]

Distributed Set Reachability 2

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

SELECT ?person WHERE {
?person <bornIn> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Cities =

 Antwerp
Saarbrücken

Ulm

 locatedIn∗
 Countries =

Belgium
France

Germany

Set Reachability Query:
Cities Countries

Distributed Set Reachability 3

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

SELECT ?person WHERE {
?person <bornIn> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Cities =

 Antwerp
Saarbrücken

Ulm

 locatedIn∗
 Countries =

Belgium
France

Germany

Set Reachability Query:
Cities Countries

Distributed Set Reachability 3

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

SELECT ?person WHERE {
?person <bornIn> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Cities =

 Antwerp
Saarbrücken

Ulm

 locatedIn∗
 Countries =

Belgium
France

Germany

Set Reachability Query:
Cities Countries

Distributed Set Reachability 3

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

SELECT ?person WHERE {
?person <bornIn> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Cities =

 Antwerp
Saarbrücken

Ulm

 locatedIn∗
 Countries =

Belgium
France

Germany

Set Reachability Query:
Cities Countries

Distributed Set Reachability 3

Applications

Application 2: Community connectedness in social networks

Example: How billionaries and philanthropic organizations are connected

Billionaries =

 Bill Gates
Warren Buffet

Donald J. Trump

 Organizations =

 The Giving Pledge
Ford Foundation

Melinda Gates Foundation

Set Reachability Query:
Billionaries Organizations

Distributed Set Reachability 4

Applications

Application 2: Community connectedness in social networks

Example: How billionaries and philanthropic organizations are connected

Billionaries =

 Bill Gates
Warren Buffet

Donald J. Trump

 Organizations =

 The Giving Pledge
Ford Foundation

Melinda Gates Foundation

Set Reachability Query:
Billionaries Organizations

Distributed Set Reachability 4

Applications

Application 2: Community connectedness in social networks

Example: How billionaries and philanthropic organizations are connected

Billionaries =

 Bill Gates
Warren Buffet

Donald J. Trump

 Organizations =

 The Giving Pledge
Ford Foundation

Melinda Gates Foundation

Set Reachability Query:
Billionaries Organizations

Distributed Set Reachability 4

How to solve a DSR query?

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

o

Query: {a, d, g} {l, q}

Supersteps

Distributed Set Reachability 5

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

vertex

Superstep i

predecessors

Superstep (i− 1)

Messages

Compute(·)

successors

Superstep (i+ 1)

Messages

“Think like a Vertex”

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

o

Query: {a, d, g} {l, q}

Supersteps

Distributed Set Reachability 5

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

vertex

Superstep i

predecessors

Superstep (i− 1)

Messages

Compute(·)

successors

Superstep (i+ 1)

Messages

“Think like a Vertex”

G1 G2 G3

d e

b

fr

aa

d

[a]

[d]

c

g i

l

kh

u

g

[g]

n

m

p

q

v

o

Query: {a, d, g} {l, q}

Supersteps

1

2

...

d

Distributed Set Reachability 5

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

vertex

Superstep i

predecessors

Superstep (i− 1)

Messages

Compute(·)

successors

Superstep (i+ 1)

Messages

“Think like a Vertex”

G1 G2 G3

d e

b

fr

a b

d e

[a] [a, d]

[a, d] [d]

c

g i

l

kh

u

l

k

u

[g]

[g]

[g]

[g]

n

m

p

q

v

o

m
[g]

Query: {a, d, g} {l, q}

Supersteps

1

2

...

d

Distributed Set Reachability 5

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

vertex

Superstep i

predecessors

Superstep (i− 1)

Messages

Compute(·)

successors

Superstep (i+ 1)

Messages

“Think like a Vertex”

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

l [a, d, g]

n

m

p

q

v

o

q

[a, d, g]

Query: {a, d, g} {l, q}

Supersteps

1

2

...

d

Distributed Set Reachability 5

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

vertex

Superstep i

predecessors

Superstep (i− 1)

Messages

Compute(·)

successors

Superstep (i+ 1)

Messages

“Think like a Vertex”

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

l [a, d, g]

n

m

p

q

v

o

q

[a, d, g]

Query: {a, d, g} {l, q}

Supersteps

1

2

...

d

Perfomance: On small graphs (≤ 10Mi edges) and query with |S| = 10 and |T | = 10

Dataset Time(in sec) Supersteps Comm. Size(MB)
NotreDame 94.8 70 35.2
Stanford 341.9 267 79.1

Distributed Set Reachability 5

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

vertex

Superstep i

predecessors

Superstep (i− 1)

Messages

Compute(·)

successors

Superstep (i+ 1)

Messages

“Think like a Vertex”

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

l [a, d, g]

n

m

p

q

v

o

q

[a, d, g]

Query: {a, d, g} {l, q}

Supersteps

1

2

...

d

Challenges:

no reuse of computations & no support for local indexes
leading to many iterations (≤ diameter)
and thus high communication costs and high query processing times

Distributed Set Reachability 5

An efficient solution for DSR?

Objectives:
1. minimize the size and number of messages exchanged

2. to speed up & reuse computations as much as possible in local nodes

3. scalable to large graphs

Distributed Set Reachability 6

An efficient solution for DSR?

Objectives:

1. minimize the size and number of messages exchanged

reachability is invariant between supersteps
precompute & replicate the partial reachability
i.e., reachability among boundary nodes ⇒ Boundary graph

2. to speed up & reuse computations as much as possible in local nodes

3. scalable to large graphs

Distributed Set Reachability 6

An efficient solution for DSR?

Objectives:
1. minimize the size and number of messages exchanged

reachability is invariant between supersteps
precompute & replicate the partial reachability
i.e., reachability among boundary nodes ⇒ Boundary graph

2. to speed up & reuse computations as much as possible in
local nodes

local graph + boundary graph ⇒ Compound graph
on the compound graph,
build indexes via centralized (set) reachability approaches
[YCZ10, SABW13, GA13, TKC+14]

3. scalable to large graphs

Distributed Set Reachability 6

An efficient solution for DSR?

Objectives:
1. minimize the size and number of messages exchanged

reachability is invariant between supersteps
precompute & replicate the partial reachability
i.e., reachability among boundary nodes ⇒ Boundary graph

2. to speed up & reuse computations as much as possible in local nodes

local graph + boundary graph ⇒ Compound graph
on the compound graph,
build indexes via centralized (set) reachability approaches
[YCZ10, SABW13, GA13, TKC+14]

3. scalable to large graphs

boundary graph compression via equivalence sets grouping
condense compound graphs by computing SCCs

Distributed Set Reachability 6

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

o

f

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)

f b

e

g

c

h

i n

m

o

Boundary Graph

Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)

f b

e

g

c

h

i n

m

o

GB
1

f b

e

g

c

h

i n

m

o

GB
2

f b

e

g

c

h

i n

m

o

GB
3

Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)

f b

e

g

c

h

i n

m

o

GB
1

f b

e

g

c

h

i n

m

o

GB
2

f b

e

g

c

h

i n

m

o

GB
3

Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

of

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii Oi (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability 7

Query processing

d e

b

fr

a

g

c

h

i n

m

o

e

b

f

Forward List: F1 = {c, g, h,m, n}
Backward List: B1 = {g, i, o}

a

f

aa

d

c

g i

l

k

u

h

e

f

b

n

m

o

c

g i

h

F2 = {f,m, n}
B2 = {b, e, o}

l

g

n

m

p

q

v

o

ig

c

h

e

f

b

n

m

o

F3 = {f, c, g, h}
B3 = {b, e, i, g}

q

m

n

m

n

Distributed Set Reachability 8

Query processing

d e

b

fr

a

g

c

h

i n

m

o

e

b

f

Forward List: F1 = {c, g, h,m, n}
Backward List: B1 = {g, i, o}

a

f

aa

d

c

g i

l

k

u

h

e

f

b

n

m

o

c

g i

h

F2 = {f,m, n}
B2 = {b, e, o}

l

g

n

m

p

q

v

o

ig

c

h

e

f

b

n

m

o

F3 = {f, c, g, h}
B3 = {b, e, i, g}

q

m

n

m

n

Distributed Set Reachability 8

Query processing

Query: a f

d e

b

fr

a

g

c

h

i n

m

o

e

b

f

Forward List: F1 = {c, g, h,m, n}
Backward List: B1 = {g, i, o}

a

f

aa

d

c

g i

l

k

u

h

e

f

b

n

m

o

c

g i

h

F2 = {f,m, n}
B2 = {b, e, o}

l

g

n

m

p

q

v

o

ig

c

h

e

f

b

n

m

o

F3 = {f, c, g, h}
B3 = {b, e, i, g}

q

m

n

m

n

If s and t are local ⇒ no communication, entire query can be processed locally

Distributed Set Reachability 8

Query processing

Query: a q

d e

b

fr

a

g

c

h

i n

m

o

e

b

f

Forward List: F1 = {c, g, h,m, n}
Backward List: B1 = {g, i, o}

a

f

a

a

d

c

g i

l

k

u

h

e

f

b

n

m

o

c

g i

h

F2 = {f,m, n}
B2 = {b, e, o}

l

g

n

m

p

q

v

o

ig

c

h

e

f

b

n

m

o

F3 = {f, c, g, h}
B3 = {b, e, i, g}

q

m

n

m

n

Distributed Set Reachability 8

Query processing

Query: a q

d e

b

fr

a

g

c

h

i n

m

o

e

b

f

Forward List: F1 = {c, g, h,m, n}
Backward List: B1 = {g, i, o}

a

f

a

a

d

c

g i

l

k

u

h

e

f

b

n

m

o

c

g i

h

F2 = {f,m, n}
B2 = {b, e, o}

l

g

n

m

p

q

v

o

ig

c

h

e

f

b

n

m

o

F3 = {f, c, g, h}
B3 = {b, e, i, g}

q

m

n

m

n

If s and t are non-local ⇒ one step communication, involves atmost two partitions

Distributed Set Reachability 8

Query processing

Query: {a, d, g} {l, q}

d e

b

fr

a

g

c

h

i n

m

o

e

b

f

Forward List: F1 = {c, g, h,m, n}
Backward List: B1 = {g, i, o}

a

f

a

a

d

Step1: ∅

c

g i

l

k

u

h

e

f

b

n

m

o

c

g i

h

F2 = {f,m, n}
B2 = {b, e, o}

l

g

{〈g, l〉}

n

m

p

q

v

o

ig

c

h

e

f

b

n

m

o

F3 = {f, c, g, h}
B3 = {b, e, i, g}

q

m

n

q

∅

m

n

Distributed Set Reachability 8

Query processing

Query: {a, d, g} {l, q}

d e

b

fr

a

g

c

h

i n

m

o

e

b

f

Forward List: F1 = {c, g, h,m, n}
Backward List: B1 = {g, i, o}

a

f

aa

d

Step1: ∅

Step2: ∅

f

c

g i

l

k

u

h

e

f

b

n

m

o

c

g i

h

F2 = {f,m, n}
B2 = {b, e, o}

l

g

{〈g, l〉}

c l

g

h

{〈a, l〉, 〈d, l〉}

n

m

p

q

v

o

ig

c

h

e

f

b

n

m

o

F3 = {f, c, g, h}
B3 = {b, e, i, g}

q

m

n

q

∅

q

{〈a, q〉, 〈d, q〉 〈g, q〉}

m

n

Distributed Set Reachability 8

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

G1 G2 G3

d ee

bb

ffr

a cc

g ii

l

khh

u

nn

mm

p

q

v

oo Fwd eq sets (in-virtual nodes)

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

G1 G2 G3

d ee

bb

ffr

a cc

g ii

l

khh

u

nn

mm

p

q

v

oo Fwd eq sets (in-virtual nodes)

in-boundaries m, n reach same set of vertices in G3 ⇒ forward equivalent

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

G1 G2 G3

d ee

bb

ffr

a cc

g ii

l

khh

u

nn

mm

p

q

v

oo Fwd eq sets (in-virtual nodes)

in-boundaries m, n reach same set of vertices in G3 ⇒ forward equivalent

out-boundaries b, e are reachable from same set of vertices in G1 ⇒ backward
equivalent

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

G1 G2 G3

d ee

bb

ffr

a cc

g ii

l

khh

u

nn

mm

p

q

v

oo Fwd eq sets (in-virtual nodes)

in-boundaries m, n reach same set of vertices in G3 ⇒ forward equivalent

out-boundaries b, e are reachable from same set of vertices in G1 ⇒ backward
equivalent

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

G1 G2 G3

d ee

bb

ffr

a cc

g ii

l

khh

u

nn

mm

p

q

v

oo

I1 = {f}

O1 = {b, e}

I2 = {c, g, h}

O2 = {i, g}

I3 = {m,n}

O3 = {o}

Fwd eq sets (in-virtual nodes)

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

G1 G2 G3

d ee

bb

ffr

a cc

g ii

l

khh

u

nn

mm

p

q

v

oo

I1 = {f}

O1 = {b, e}

I2 = {c, g, h}

O2 = {i, g}

I3 = {m,n}

O3 = {o}

υ1 = {f}

ν1 = {b, e}

υ2 = {c, h}, υ3 = {g}

ν2 = {i}, ν3 = {g}

υ4 = {m,n}

ν4 = {o}

Fwd eq sets (in-virtual nodes)

Bwd eq sets (out-virtual nodes)

Fwd eq sets (in-virtual nodes)

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

G1 G2 G3

d ee

bb

ffr

a cc

g ii

l

khh

u

nn

mm

p

q

v

oo

I1 = {f}

O1 = {b, e}

I2 = {c, g, h}

O2 = {i, g}

I3 = {m,n}

O3 = {o}

υ1 = {f}

ν1 = {b, e}

υ2 = {c, h}, υ3 = {g}

ν2 = {i}, ν3 = {g}

υ4 = {m,n}

ν4 = {o}

Fwd eq sets (in-virtual nodes)

Bwd eq sets (out-virtual nodes)

Fwd eq sets (in-virtual nodes)

Distributed Set Reachability 9

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b

e

g

c

h

i n

m

o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

d e

b

fr

a

υ3

υ2

ν2

ν3

υ4

ν4

−→c

−→
h

−→n

−→m

c

g i

l

kh

u
ν1

υ1

υ4

ν4

←−
b

←−e
←−e

−→n
−→m

n

m

p

q

v

o

ν3υ3υ1

ν1 υ2 ν2

−→
c, h

←−
b, e

lower communication costs, scalable to very large graphs

Distributed Set Reachability 9

Evaluation
Datasets:

Small Large
Graphs |V| |E| Graphs |V| |E|
Amazon 403,394 3,387,388 LiveJ-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595 Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039 Freebase-500M 97,290,357 499,982,284
NotreDame 325,729 1,497,134 Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497 LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000 LUBM-1B 222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Distributed Set Reachability 10

Evaluation
Datasets:

Small Large
Graphs |V| |E| Graphs |V| |E|
Amazon 403,394 3,387,388 LiveJ-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595 Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039 Freebase-500M 97,290,357 499,982,284
NotreDame 325,729 1,497,134 Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497 LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000 LUBM-1B 222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Performance:

Am
az

on

Ber
kS

ta
n

Goog
le

N
ot

re
D

am
e

Sta
nfo

rd

Liv
eJ

-2
0M

101

103

105

T
im

e
(m

s)

DSR DSR-Fan Giraph Giraph++

Liv
eJ

-6
8M

Fre
eb

as
e

T
w

itt
er

LU
BM

102

104

106

x x x x x

DSR is orders of magnitude faster than Giraph, Giraph++, and DSR-Fan
Distributed Set Reachability 10

Evaluation
Datasets:

Small Large
Graphs |V| |E| Graphs |V| |E|
Amazon 403,394 3,387,388 LiveJ-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595 Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039 Freebase-500M 97,290,357 499,982,284
NotreDame 325,729 1,497,134 Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497 LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000 LUBM-1B 222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Scalability:

2 3 4 5 6 7 8 9

102

104

Partitions

Q
u

er
y

T
im

e
(i

n
m

s)

DSR Giraph++wEq Giraph++ Giraph

3 4 5 6 7 8 9

105

106

Partitions

10x10 50x50 100x100

102

104

Query Sizes

Q
u

er
y

T
im

e
(i

n
m

s)

DSR Giraph++wEq Giraph++ Giraph

10x10 50x50 100x100

102

103

Query Sizes

LiveJ-68 Freebase-1B

LiveJ-68 Freebase-1B

B. Freebase - 1 Billion dataset

Distributed Set Reachability 10

Evaluation
Datasets:

Small Large
Graphs |V| |E| Graphs |V| |E|
Amazon 403,394 3,387,388 LiveJ-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595 Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039 Freebase-500M 97,290,357 499,982,284
NotreDame 325,729 1,497,134 Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497 LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000 LUBM-1B 222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Scalability:

2 3 4 5 6 7 8 9

102

104

Partitions

Q
u

er
y

T
im

e
(i

n
m

s)

DSR Giraph++wEq Giraph++ Giraph

3 4 5 6 7 8 9

105

106

Partitions

10x10 50x50 100x100

102

104

Query Sizes

Q
u

er
y

T
im

e
(i

n
m

s)

DSR Giraph++wEq Giraph++ Giraph

10x10 50x50 100x100

102

103

Query Sizes

LiveJ-68 Freebase-1B LiveJ-68 Freebase-1B

B. Freebase - 1 Billion dataset

Distributed Set Reachability 10

Conclusions

We introduced and investigated the Distributed Set
Reachability problem

Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

Compression via equivalent sets grouping helps in scaling to
large graphs

Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention

Distributed Set Reachability 11

Conclusions

We introduced and investigated the Distributed Set
Reachability problem

Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

Compression via equivalent sets grouping helps in scaling to
large graphs

Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention

Distributed Set Reachability 11

Conclusions

We introduced and investigated the Distributed Set
Reachability problem

Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

Compression via equivalent sets grouping helps in scaling to
large graphs

Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention

Distributed Set Reachability 11

Conclusions

We introduced and investigated the Distributed Set
Reachability problem

Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

Compression via equivalent sets grouping helps in scaling to
large graphs

Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention

Distributed Set Reachability 11

Conclusions

We introduced and investigated the Distributed Set
Reachability problem

Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

Compression via equivalent sets grouping helps in scaling to
large graphs

Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention

Distributed Set Reachability 11

References I

Wenfei Fan, Xin Wang, and Yinghui Wu, Performance guarantees for
distributed reachability queries, PVLDB 5 (2012), no. 11, 1304–1315.

Sidan Gao and Kemafor Anyanwu, PrefixSolve: efficiently solving multi-source
multi-destination path queries on RDF graphs by sharing suffix computations,
WWW, 2013, pp. 423–434.

Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum,
FERRARI: flexible and efficient reachability range assignment for graph
indexing, ICDE, 2013, pp. 1009–1020.

Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien
Pham, Alfons Kemper, Thomas Neumann, and Huy T. Vo, The more the
merrier: Efficient multi-source graph traversal, PVLDB 8 (2014), no. 4,
449–460.

Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki, GRAIL: Scalable
Reachability Index for Large Graphs, PVLDB 3 (2010), no. 1-2, 276–284.

Questions?
For more details, please visit my poster: 84

Distributed Set Reachability 12

