Distributed Set Reachability

Sairam Gurajada* and Martin Theobald?
*Max-Plack Institute for Informatics, TUniversity of Ulm

Germany

SIGMOD 2016, San Francisco, USA

ulmun Hs/u\rm

I Ulm

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem
m extended to sets

m in a distributed setting

Distributed Set Reachability

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem
m extended to sets

m in a distributed setting

Distributed Set Reachability

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem
m extended to sets

m in a distributed setting

d~q: True

m Reachability. s ~~ ¢, find if there exists a path from s to ¢t in G [SABW13, YCZ10]

Distributed Set Reachability

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem
m extended to sets

m in a distributed setting

Reachable pairs

(a,1),{a,q)
(d,1) (d, q)
(9.1) (g9, 0)

Graph G

m Reachability. s ~~ ¢, find if there exists a path from s to ¢t in G [SABW13, YCZ10]

m Set Reachability. S ~ T, finds all pairs (s, t), such that s € S, t € T and
s~ tin G [TKCT 14, GA13]

Distributed Set Reachability

Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem
m extended to sets
m in a distributed setting

Reachable pairs

(a,1),{a,q)
(d,1) (d, q)
(9,1 (g, 0)

Graph G is partitioned into Gy, Gy, G3

m Distributed Reachability. s ~» ¢, find if there exists a path from s to t in G
[FWw12]

m Distributed Set Reachability. S ~ T, finds all pairs (s, t), such that s € S,
teT and s~ tin G [

Distributed Set Reachability

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Distributed Set Reachability

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs
m Example: Find all people born in Europe who won a Nobel Prize
SELECT ?person WHERE {

?person <bornln> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Distributed Set Reachability

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs
m Example: Find all people born in Europe who won a Nobel Prize
SELECT ?person WHERE {

?person <bornln> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Antwer| Belgium

P locatedIns* g
Clities = { Saarbriicken > Countries = France
Ulm Germany

Distributed Set Reachability

Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs
m Example: Find all people born in Europe who won a Nobel Prize
SELECT ?person WHERE {

?person <bornln> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Antwerp \ " Belgium

Y . t)
Clities = { Saarbriicken eE™ Countries = France
Ulm Germany

Set Reachability Query:
Clities ~~ Countries

Distributed Set Reachability

Applications

Application 2: Community connectedness in social networks

Distributed Set Reachability

Applications

Application 2: Community connectedness in social networks

m Example: How billionaries and philanthropic organizations are connected

Bill Gates The Giving Pledge
Billionaries = Warren Buffet Organizations = Ford Foundation
Donald J. Trump Melinda Gates Foundation

Distributed Set Reachability 4

Applications

Application 2: Community connectedness in social networks

m Example: How billionaries and philanthropic organizations are connected

Bill Gates The Giving Pledge
Billionaries = Warren Buffet Organizations = Ford Foundation
Donald J. Trump Melinda Gates Foundation

Set Reachability Query:
Billionaries ~» Organizations

Distributed Set Reachability 4

How to solve a DSR query?

Query: {a,d, g} ~ {l,q}

Distributed Set Reachability

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

“Think like a Vertex”

Compute(-)
uocessory)
predecessor. ertes SUCCESSOT'S
fredeccssord— et — s
Superstep (i — 1) Superstep i Superstep (i + 1)

Query: {a,d, g} ~ {l,q}

Distributed Set Reachability

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

“Think like a Vertex”

Compute(-)
uocessory)
predecessor. ertes SUCCESSOT'S
fredeccssord— et — s
Superstep (i — 1) Superstep i Superstep (i + 1)

Query: {a,d, g} ~ {l,q}

Supersteps

Distributed Set Reachability

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

“Think like a Vertex”

Compute(-)
uocessory)
predecessor. ertes SUCCESSOT'S
fredeccssord— et — s
Superstep (i — 1) Superstep i Superstep (i + 1)

Query: {a,d, g} ~ {l,q}

Supersteps

Distributed Set Reachability

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

“Think like a Vertex”

Compute(-)
uocessory)
predecessor. ertes SUCCESSOT'S
fredeccssord— et — s
Superstep (i — 1) Superstep i Superstep (i + 1)

Query: {a,d, g} ~ {l,q}

Supersteps

Distributed Set Reachability

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

“Think like a Vertex”

Compute(-)
t uocessory)
predecessor. ertes SUCCESSOT'S
J M & Messages
Superstep (i — 1) Superstep i Superstep (i + 1)

Query: {a,d, g} ~ {l,q}

Supersteps

Perfomance: On small graphs (< 10Mi edges) and query with |S| = 10 and |T'| = 10

Dataset Time(in sec) Supersteps Comm. Size(MB)
NotreDame 94.8 70 35.2
Stanford 341.9 267 79.1

Distributed Set Reachability

How to solve a DSR query?

Vertex-Centric approaches: Like Pregel, Giraph,...

“Think like a Vertex"

Compute(-)
d t, successors
(predecessors} — vertex ryp— success
Superstep (i — 1) Superstep i Superstep (i + 1)

Query: {a,d, g} ~ {l,q}

Supersteps

Challenges:

m no reuse of computations & no support for local indexes
m leading to many iterations (< diameter)
m and thus high communication costs and high query processing times

Distributed Set Reachability

An efficient solution for DSR?

Objectives:

1. minimize the size and number of messages exchanged
2. to speed up & reuse computations as much as possible in local nodes

3. scalable to large graphs

Distributed Set Reachability

An efficient solution for DSR?

Objectives:

1. minimize the size and number of messages exchanged
m reachability is invariant between supersteps
m precompute & replicate the partial reachability
i.e., reachability among boundary nodes = Boundary graph
2. to speed up & reuse computations as much as possible in local nodes

3. scalable to large graphs

Distributed Set Reachability

An efficient solution for DSR?

Objectives:

1. minimize the size and number of messages exchanged
B reachability is invariant between supersteps
B precompute & replicate the partial reachability
i.e., reachability among boundary nodes = Boundary graph
2. to speed up & reuse computations as much as possible in
local nodes
m local graph + boundary graph = Compound graph
m on the compound graph,
build indexes via centralized (set) reachability approaches
[YCZ10, SABW13, GA13, TKCT14]
3. scalable to large graphs

Distributed Set Reachability

An efficient solution for DSR?

Objectives:

1. minimize the size and number of messages exchanged
B reachability is invariant between supersteps
B precompute & replicate the partial reachability
i.e., reachability among boundary nodes = Boundary graph
2. to speed up & reuse computations as much as possible in local nodes
B local graph + boundary graph = Compound graph
B on the compound graph,
build indexes via centralized (set) reachability approaches
[YCZ10, SABW13, GA13, TKCT 14]
3. scalable to large graphs

m boundary graph compression via equivalence sets grouping
m condense compound graphs by computing SCCs

Distributed Set Reachability

Precomputation

Distributed Set Reachability

Precomputation

L ={f} Iy =A{c.g,h} I3 = {m,n}

Distributed Set Reachability

Precomputation

L ={f} I ={ec.g,h} Iy = {m,n}
01 = {b,e} 0, ={yg,i} 03 = {0}

Distributed Set Reachability

Precomputation

L ={f} I ={ec.g,h} Iy = {m,n}
01 = {b,e} 0, ={yg,i} 03 = {0}

Distributed Set Reachability

Precomputation

L ={f} Iy ={c,g.h} Iy ={m,n}
Or={b,e} 0y ={yg.i} 03 = {0}
Step 1: Compute reachability from I; ~ O; (set reachability) (Boundary Graph)

N2

N

Boundary Graph

Distributed Set Reachability

Precomputation

L ={f} I ={ec.g,h} Iy = {m,n}
01 = {b,e} 0, = {g,i} 03 = {0}

Step 1: Compute reachability from I; ~ O; (set reachability) (Boundary Graph)

< 524 ¢

Distributed Set Reachability

Precomputation

L ={f} I ={ec.g,h} Iy = {m,n}
01 = {b,e} 0, = {g,i} 03 = {0}

Step 1: Compute reachability from I; ~ O; (set reachability) (Boundary Graph)

PO wgEEY

Distributed Set Reachability

Precomputation

L ={f} I ={ec.g,h} Iy = {m,n}
01 = {b E’} 02 = {g, Z} 03 = {O}

Step 1: Compute reachability from I; ~ O; (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

Distributed Set Reachability

Precomputation

L ={f} I ={ec.g,h} Iy = {m,n}
01 = {b E’} 02 = {g, Z} 03 = {O}

Step 1: Compute reachability from I; ~ O; (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing

Distributed Set Reachability

Query processing

Distributed Set Reachability

Query processing

Forward List: F} = {c,g,h,m,n} F={f,m,n} F3={f,cg,h}
Backward List: By = {g,i,0} By = {b,e,0} Bs = {b,e,i,g}

Distributed Set Reachability

Query processing

Query: a ~ f

Forward List: F} = {c,g,h,m,n} Fy={f,m,n} F3={f,c,g.h}
Backward List: By = {g,i,0} By, = {b,e, 0} B; ={b,e,i, g}

If s and t are local = no communication, entire query can be processed locally

Distributed Set Reachability

Query processing

Query: a ~ q

Forward List: F} = {c,g,h,m,n} F={f,m,n} Fs={f,cg,h}
Backward List: By = {g,1,0} B, = {b,e, 0} Bs ={b,e,i,g}

Distributed Set Reachability

Query processing

Query: a ~ q

Forward List: F} = {c,g,h,m,n} Fy={f,m,n} F3={f,c,g.h}
Backward List: By = {g,i,0} By, = {b,e, 0} B; ={b,e,i, g}

If s and t are non-local = one step communication, involves atmost two partitions

Distributed Set Reachability

Query processing

Query: {a,d, g} ~ {l,q}

Forward List: F} = {c,g,h,m,n} Fy={fcg,h}
Backward List: By = {g,4,0} By = {b,e,i,9}
Stepl: 0 {(9,; D)} 0

Distributed Set Reachability

Query processing

Query: {a,d, g} ~ {l,q}

Forward List: F} = {c, g,h,m,n} Fy={f,m,n}
Backward List: By = {g,i,0} By = {b,e, 0}
Stepl: 0 {9, 1)} 0
Step2: 0 {(a.), (d, 1)} {(a.q),{d.q) (9, 0)}

Distributed Set Reachability

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

2 2 Size: O(XX, (1] - [0]) + | Ec)

7z r’
O ON0= 020
!< : Rodl , Google: 43.6Mi (8.5 x |E|)
OO ©) LiveJ-20M: 861.4Mi (43.07 x | E])

Boundary Graph

Distributed Set Reachability

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

RO Size: O(SL (1] [0W) + | Ecl)
O ON0= 020
k : Rodl , Google: 43.6Mi (8.5 x |E|)
VG © LiveJ-20M: 861.4Mi (43.07 x |E|)

Boundary Graph

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

Distributed Set Reachability

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

RO Size: O(SL (1] [0W) + | Ecl)
O ON0= 020
k : Rodl , Google: 43.6Mi (8.5 x |E|)
VG © LiveJ-20M: 861.4Mi (43.07 x |E|)

Boundary Graph

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

in-boundaries m, n reach same set of vertices in G3 = forward equivalent

Distributed Set Reachability

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

O 2 Size: O(S, (11| - [04]) + | Eel)

O ON0= 020
!< : Rodl , Google: 43.6Mi (8.5 x |E|)
OO ©) LiveJ-20M: 861.4Mi (43.07 x | E])

Boundary Graph

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

in-boundaries m, n reach same set of vertices in G3 = forward equivalent

out-boundaries b, e are reachable from same set of vertices in G; = backward
equivalent
Distributed Set Reachability

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

RO Size: O(SL (1] [0W) + | Ecl)
O ON0= 020
k : Rodl , Google: 43.6Mi (8.5 x |E|)
VG © LiveJ-20M: 861.4Mi (43.07 x |E|)

Boundary Graph

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

in-boundaries m, n reach same set of vertices in G3 = forward equivalent

out-boundaries b, e are reachable from same set of vertices in G; = backward
equivalent
Distributed Set Reachability

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

RO Size: O(SL (1] [0W) + | Ecl)
O ON0= 020

Rodl , Google: 43.6Mi (8.5 x |E|)
VG © LiveJ-20M: 861.4Mi (43.07 x |E|)

Boundary Graph

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

O, = {b,e} 0y = {i, g} 05 = {0}

Distributed Set Reachability

Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

RO Size: O(SL (1] [0W) + | Ecl)
O ON0= 020

Rodl , Google: 43.6Mi (8.5 x |E|)
VG © LiveJ-20M: 861.4Mi (43.07 x |E|)

Boundary Graph

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

L={f} Iy ={c.g.h} Iy ={m,n}
O1={b.e} 0y = {i,g} 03 = {o}

v = {f} vy = {c,h}.vs = {g} vs = {m,n} | Fwd eq sets (in-virtual nodes)
v = {b.c} v2 = {i},vs = {g} vs = {0} Bwd eq sets (out-virtual nodes)

Distributed Set Reachability

Scaling to Large Graphs
One of the main challenges for scalability is the size of boundary graph

7 f k A
AR @@ S omLIN T iR
e
OO0 020, i s e -)
, | C—() () N;: set of in-virtual nodes at i
OO '

() . . T;: set of out-virtual nodes at i

---------- [N: <L, Y < 0, and [Ey| < |Ec||

Boundary Graph Compressed Boundary Graph

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.

L={f} Iy ={c.g.h} Iy ={m,n}
O1={b.e} 0y = {i,g} 03 = {o}

v = {f} vy = {c,h}.vs = {g} vs = {m,n} | Fwd eq sets (in-virtual nodes)
v = {b.c} v2 = {i},vs = {g} vs = {0} Bwd eq sets (out-virtual nodes)

Distributed Set Reachability

Scaling to Large Graphs
One of the main challenges for scalability is the size of boundary graph

7 f k A
AR oGO Pe S o T+ i)
Nl
@ g0 ¥ o S o .
, | C—() () N;: set of in-virtual nodes at i
o0 ‘

() . . T;: set of out-virtual nodes at i

---------- [N; < T, Yi < 0y, and | Eg| < [Ec]|

Boundary Graph Compressed Boundary Graph

lower communication costs, scalable to very large graphs

Distributed Set Reachability

Evaluation

Datasets:

Small Large

Graphs [\ |E|||Graphs V| |E|
Amazon 403,394 3,387,388][Live]-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595|| Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039||Freebase-500M 97,290,357 499,982,284
NotreDame 325,729 1,497,134||Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497||LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000((LUBM-1B 222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Distributed Set Reachability

10

Evaluation

Datasets:
Small Large
Graphs [\ |E|||Graphs V| |E|
Amazon 403,394 3,387,388][Live]-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595|| Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039||Freebase-500M 97,290,357 499,982,284

NotreDame 325,729 1,497,134||Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497||LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000||LUBM-1B 222,213,904 961,394,352

Graph datasets
Setup: Master:1, Slaves:9, Memory:64 GB

Performance:

0 o DsSR B @ DSR-Fan B B Giraph B B Giraph++

Time (ms)

DSR is orders of magnitude faster than Giraph, Giraph++, and DSR-Fan

Distributed Set Reachability 10

Evaluation

Datasets:
Small Large
Graphs [\ |E|||Graphs V| |E|
Amazon 403,394 3,387,388][Live]-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595|| Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039||Freebase-500M 97,290,357 499,982,284

NotreDame 325,729 1,497,134||Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497||LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000||LUBM-1B 222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Scalability:
‘ — DSR—x— Giraph+4wEq Giraph-++ —&— Giraph ‘
= T T BT T T T T
£ . [1
S0t f R
E 1
= 5 |
> 3
2102 7\ L | ’WE
S 2 3 45 6 7 8 9 3 4 5 6 7 8 9
Partitions # Partitions
Livel)-68 Freebase-1B

Distributed Set Reachability

10

Evaluation

Datasets:
Small Large
Graphs [\ |E|||Graphs V| |E|
Amazon 403,394 3,387,388][Live]-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595|| Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039||Freebase-500M 97,290,357 499,982,284

NotreDame 325,729
Stanford 281,903
LiveJ-20M 2,545,981

1,497,134||Freebase-1B
2,312,497|| LUBM-500M

20,000,000||LUBM-1B

156,595,723 999,965,047
115,561,430 500,002,176
222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Scalability:
‘ — DSR—x— Giraph+4wEq Giraph-++ —&— Giraph ‘ ‘ [0 0SRA B Giraph+—+wEq B B Giraph++ 0 B Giraph
I I I I I I
= T T T 11 = L = A F
E %ﬂc&&t&@ F 1 E 0
£ = £
St , e =T r
E 1 E i
= N F 102 &
> E
2ol | M: Sl
| 1] Bl 1011 1 il il il il il
< 2 34567 89 3 4 5 6 7 8 9 < T 1 1 1 1
10x10 50x50 100x100 10x10 50x50 100x100
Partitions # Partitions Query Sizes Query Sizes
Livel)-68 Freebase-1B LivelJ-68 Freebase-1B

Distributed Set Reachability

10

Conclusions

m We introduced and investigated the Distributed Set
Reachability problem

Distributed Set Reachability

11

Conclusions

m We introduced and investigated the Distributed Set
Reachability problem

m Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

Distributed Set Reachability 11

Conclusions

m We introduced and investigated the Distributed Set
Reachability problem

m Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

m Compression via equivalent sets grouping helps in scaling to
large graphs

Distributed Set Reachability 11

Conclusions

m We introduced and investigated the Distributed Set
Reachability problem

m Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

m Compression via equivalent sets grouping helps in scaling to
large graphs
m Extensible to dynamic graphs (from our preliminary tests)

Distributed Set Reachability 11

Conclusions

m We introduced and investigated the Distributed Set
Reachability problem

m Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

m Compression via equivalent sets grouping helps in scaling to
large graphs
m Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention

Distributed Set Reachability 11

References |

Wenfei Fan, Xin Wang, and Yinghui Wu, Performance guarantees for
distributed reachability queries, PVLDB 5 (2012), no. 11, 1304-1315.

Sidan Gao and Kemafor Anyanwu, PrefixSolve: efficiently solving multi-source
multi-destination path queries on RDF graphs by sharing suffix computations,
WWW, 2013, pp. 423-434.

Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum,
FERRARI: flexible and efficient reachability range assignment for graph
indexing, ICDE, 2013, pp. 1009-1020.

Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien
Pham, Alfons Kemper, Thomas Neumann, and Huy T. Vo, The more the
merrier: Efficient multi-source graph traversal, PVLDB 8 (2014), no. 4,
449-460.

Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki, GRAIL: Scalable
Reachability Index for Large Graphs, PVLDB 3 (2010), no. 1-2, 276-284.

Questions?
For more details, please visit my poster: 84

Distributed Set Reachability 12

