Sairam Gurajada* and Martin Theobald[†] *Max-Plack Institute for Informatics, [†]University of Ulm Germany

SIGMOD 2016, San Francisco, USA

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

- extended to sets
- in a distributed setting

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

- extended to sets
- in a distributed setting

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

- extended to sets
- in a distributed setting

Reachability. $s \rightsquigarrow t$, find if there exists a path from s to t in G [SABW13, YCZ10]

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

- extended to sets
- in a distributed setting

- Graph G
- **Reachability.** $s \rightsquigarrow t$, find if there exists a path from s to t in G [SABW13, YCZ10]
- **Set Reachability.** $S \rightsquigarrow T$, finds all pairs $\langle s, t \rangle$, such that $s \in S$, $t \in T$ and $s \rightsquigarrow t$ in G [TKC⁺14, GA13]

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

- extended to sets
- in a distributed setting

Graph G is partitioned into G_1, G_2, G_3

- **Distributed Reachability.** $s \rightsquigarrow t$, find if there exists a path from s to t in G [FWW12]
- **Distributed Set Reachability.** $S \rightsquigarrow T$, finds all pairs $\langle s, t \rangle$, such that $s \in S$, $t \in T$ and $s \rightsquigarrow t$ in G [?]

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

```
SELECT ?person WHERE {
?person <bornIn> ?city .    ?person <won> "Nobel Prize" .
?city <locatedIn>* ?country .    ?country <partOf> "Europe".}
```

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

Application 2: Community connectedness in social networks

Application 2: Community connectedness in social networks

Example: How billionaries and philanthropic organizations are connected

$$\frac{Bill \text{ Gates}}{Bill \text{ Gates}} = \begin{cases} \text{Bill Gates} \\ \text{Warren Buffet} \\ \text{Donald J. Trump} \end{cases} \qquad Organizations = \begin{cases} \text{The Giving Pledge} \\ \text{Ford Foundation} \\ \text{Melinda Gates Foundation} \end{cases}$$

Application 2: Community connectedness in social networks

Example: How billionaries and philanthropic organizations are connected

$$\frac{Bill \text{ Gates}}{Bill \text{ Gates}} = \begin{cases} Bill \text{ Gates} \\ Warren Buffet} \\ Donald J. Trump \end{cases} \qquad Organizations = \begin{cases} The Giving Pledge \\ Ford Foundation \\ Melinda Gates Foundation \end{cases}$$

Set Reachability Query: Billionaries ~> Organizations

Vertex-Centric approaches: Like Pregel, Giraph,...

Perfomance: On small graphs (\leq 10Mi edges) and query with |S| = 10 and |T| = 10

Dataset	Time(in sec)	Supersteps	Comm. Size(MB)
NotreDame	94.8	70	35.2
Stanford	341.9	267	79.1

Vertex-Centric approaches: Like Pregel, Giraph,...

Challenges:

- no reuse of computations & no support for local indexes
- leading to many iterations (≤ diameter)
- and thus high communication costs and high query processing times

Objectives:

- 1. minimize the size and number of messages exchanged
- 2. to speed up & reuse computations as much as possible in local nodes
- 3. scalable to large graphs

Objectives:

1. minimize the size and number of messages exchanged

- reachability is invariant between supersteps
- precompute & replicate the partial reachability
 - i.e., reachability among boundary nodes \Rightarrow **Boundary graph**
- 2. to speed up & reuse computations as much as possible in local nodes
- 3. scalable to large graphs

Objectives:

- 1. minimize the size and number of messages exchanged
 - reachability is invariant between supersteps
 - precompute & replicate the partial reachability i.e., reachability among boundary nodes ⇒ Boundary graph
- 2. to speed up & reuse computations as much as possible in local nodes
 - local graph + boundary graph ⇒ Compound graph
 - on the compound graph,

build indexes via centralized (set) reachability approaches [YCZ10, SABW13, GA13, TKC⁺14]

3. scalable to large graphs

Objectives:

- 1. minimize the size and number of messages exchanged
 - reachability is invariant between supersteps
 - precompute & replicate the partial reachability i.e., reachability among boundary nodes ⇒ Boundary graph
- 2. to speed up & reuse computations as much as possible in local nodes
 - local graph + boundary graph ⇒ Compound graph
 - on the compound graph, build indexes via centralized (set) reachability approaches [YCZ10, SABW13, GA13, TKC⁺14]

3. scalable to large graphs

- boundary graph compression via equivalence sets grouping
- condense compound graphs by computing SCCs

Step 1: Compute reachability from $I_i \rightsquigarrow O_i$ (set reachability) (Boundary Graph)

Boundary Graph

Step 1: Compute reachability from $I_i \rightsquigarrow O_i$ (set reachability) (Boundary Graph)

Step 1: Compute reachability from $I_i \rightsquigarrow O_i$ (set reachability)

(Boundary Graph)

Step 1: Compute reachability from $I_i \rightsquigarrow O_i$ (set reachability) Step 2: Merge local graph and boundary graph (Boundary Graph) (Compound Graph)

Step 1: Compute reachability from $I_i \rightsquigarrow O_i$ (set reachability) (Step 2: Merge local graph and boundary graph

(Boundary Graph) (Compound Graph)

Step 3: Optionally, build local indexes to reuse computations and speed up query processing

If s and t are local \Rightarrow no communication, entire query can be processed locally

Query: $a \rightsquigarrow q$

If s and t are non-local \Rightarrow one step communication, involves at most two partitions

Query: $\{a, d, g\} \rightsquigarrow \{l, q\}$

Query: $\{a, d, g\} \rightsquigarrow \{l, q\}$

One of the main challenges for scalability is the size of boundary graph

Size: $\mathcal{O}(\sum_{i=1}^{k} (|I_i| \cdot |O_i|) + |E_C|)$

Google: 43.6Mi ($8.5 \times |E|$) LiveJ-20M: 861.4Mi ($43.07 \times |E|$)

Boundary Graph

One of the main challenges for scalability is the size of boundary graph

Size: $\mathcal{O}(\sum_{i=1}^{k} (|I_i| \cdot |O_i|) + |E_C|)$

Google: 43.6Mi $(8.5 \times |E|)$ LiveJ-20M: 861.4Mi $(43.07 \times |E|)$

Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

One of the main challenges for scalability is the size of boundary graph

Size: $\mathcal{O}(\sum_{i=1}^{k} (|I_i| \cdot |O_i|) + |E_C|)$

Google: 43.6Mi $(8.5 \times |E|)$ LiveJ-20M: 861.4Mi $(43.07 \times |E|)$

Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

in-boundaries m, n reach same set of vertices in $G_3 \Rightarrow$ forward equivalent

One of the main challenges for scalability is the size of boundary graph

Size: $\mathcal{O}(\sum_{i=1}^{k} (|I_i| \cdot |O_i|) + |E_C|)$

Google: 43.6Mi $(8.5 \times |E|)$ LiveJ-20M: 861.4Mi $(43.07 \times |E|)$

Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

in-boundaries m, n reach same set of vertices in $G_3 \Rightarrow$ forward equivalent

out-boundaries $b,\ e$ are reachable from same set of vertices in $G_1\Rightarrow {\sf backward} \\ {\sf equivalent}$

One of the main challenges for scalability is the size of boundary graph

Size: $\mathcal{O}(\sum_{i=1}^{k} (|I_i| \cdot |O_i|) + |E_C|)$

Google: 43.6Mi $(8.5 \times |E|)$ LiveJ-20M: 861.4Mi $(43.07 \times |E|)$

Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

in-boundaries m, n reach same set of vertices in $G_3 \Rightarrow$ forward equivalent

out-boundaries $b,\ e$ are reachable from same set of vertices in $G_1\Rightarrow {\sf backward} \\ {\sf equivalent}$

One of the main challenges for scalability is the size of boundary graph

Size: $O(\sum_{i=1}^{k} (|I_i| \cdot |O_i|) + |E_C|)$

Google: 43.6Mi $(8.5 \times |E|)$ LiveJ-20M: 861.4Mi $(43.07 \times |E|)$

Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

One of the main challenges for scalability is the size of boundary graph

Size: $\mathcal{O}(\sum_{i=1}^{k} (|I_i| \cdot |O_i|) + |E_C|)$

Google: 43.6Mi $(8.5 \times |E|)$ LiveJ-20M: 861.4Mi $(43.07 \times |E|)$

Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

One of the main challenges for scalability is the size of boundary graph

Size: $\mathcal{O}(\sum_{i=1}^{k}(|N_i| \cdot |\Upsilon_i|) + |E'_C|)$

 $\begin{array}{l} N_i: \text{ set of in-virtual nodes at } i \\ \Upsilon_i: \text{ set of out-virtual nodes at } i \\ \hline N_i \leq I_i, \ \Upsilon_i \leq O_i, \text{ and } |E_C'| \leq |E_C| \end{array}$

Boundary Graph

Compressed Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

One of the main challenges for scalability is the size of boundary graph

Size:
$$\mathcal{O}(\sum_{i=1}^{k}(|N_i| \cdot |\Upsilon_i|) + |E'_C|)$$

 N_i : set of in-virtual nodes at i Υ_i : set of out-virtual nodes at i $N_i \leq I_i, \Upsilon_i \leq O_i$, and $|E'_C| \leq |E_C|$

Boundary Graph

Compressed Boundary Graph

For a given partitioning $\mathcal{G} = \{G_1, G_2, G_3\}$, we reduce the boundary graph as follows.

lower communication costs, scalable to very large graphs

Datasets:

Small			Large		
Graphs	V	E	Graphs	V	E
Amazon	403,394	3,387,388	LiveJ-68M	4,847,571	68,993,773
BerkStan	685,230	7,600,595	Twitter-1.4B	41,652,230	1,468,364,884
Google	875,713	5,105,039	Freebase-500M	97,290,357	499,982,284
NotreDame	325,729	1,497,134	Freebase-1B	156,595,723	999,965,047
Stanford	281,903	2,312,497	LUBM-500M	115,561,430	500,002,176
LiveJ-20M	2,545,981	20,000,000	LUBM-1B	222,213,904	961,394,352
Graph datasets					

Setup: Master:1, Slaves:9, Memory:64 GB

Datasets:

Small			Large		
Graphs	V	E	Graphs	V	E
Amazon	403,394	3,387,388	LiveJ-68M	4,847,571	68,993,773
BerkStan	685,230	7,600,595	Twitter-1.4B	41,652,230	1,468,364,884
Google	875,713	5,105,039	Freebase-500M	97,290,357	499,982,284
NotreDame	325,729	1,497,134	Freebase-1B	156,595,723	999,965,047
Stanford	281,903	2,312,497	LUBM-500M	115,561,430	500,002,176
LiveJ-20M	2,545,981	20,000,000	LUBM-1B	222,213,904	961,394,352
Curryle data ante					

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Performance:

DSR is orders of magnitude faster than Giraph, Giraph++, and DSR-Fan Distributed Set Reachability

Datasets:

		Large		
V	E	Graphs	V	E
403,394	3,387,388	LiveJ-68M	4,847,571	68,993,773
685,230	7,600,595	Twitter-1.4B	41,652,230	1,468,364,884
875,713	5,105,039	Freebase-500M	97,290,357	499,982,284
325,729	1,497,134	Freebase-1B	156,595,723	999,965,047
281,903	2,312,497	LUBM-500M	115,561,430	500,002,176
2,545,981	20,000,000	LUBM-1B	222,213,904	961,394,352
	 V 403,394 685,230 875,713 325,729 281,903 2,545,981	V E 403,394 3,387,388 685,230 7,600,595 875,713 5,105,039 325,729 1,497,134 281,903 2,312,497 2,545,981 20,000,000	IV EI Large Graphs 403,394 3,387,388 LiveJ-68M 685,230 7,600,595 Twitter-1.4B 875,713 5,105,039 Freebase-1B 281,903 2,312,497 LUBM-500M 2,545,981 20,000,000 LUBM-1B	VI E Large Graphs VI 403,394 3,387,388 LiveJ-68M 4,847,571 685,230 7,600,595 Twitter-1.4B 41,652,230 875,713 5,105,039 Freebase-500M 97,290,357 325,729 1,497,134 Freebase-1B 156,595,723 281,903 2,312,497 UUBM-500M 115,561,430 2,545,981 20,000,000 LUBM-1B 222,213,904

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB

Scalability:

Datasets:

Small			Large		
Graphs	V	E	Graphs	V	E
Amazon	403,394	3,387,388	LiveJ-68M	4,847,571	68,993,773
BerkStan	685,230	7,600,595	Twitter-1.4B	41,652,230	1,468,364,884
Google	875,713	5,105,039	Freebase-500M	97,290,357	499,982,284
NotreDame	325,729	1,497,134	Freebase-1B	156,595,723	999,965,047
Stanford	281,903	2,312,497	LUBM-500M	115,561,430	500,002,176
LiveJ-20M	2,545,981	20,000,000	LUBM-1B	222,213,904	961,394,352
Graph datasets					

Setup: Master:1, Slaves:9, Memory:64 GB

Scalability:

 We introduced and investigated the Distributed Set Reachability problem

- We introduced and investigated the Distributed Set Reachability problem
- Precomputation and the ability to use local indexes significantly improved the performance without hurting scalability

- We introduced and investigated the Distributed Set Reachability problem
- Precomputation and the ability to use local indexes significantly improved the performance without hurting scalability
- Compression via equivalent sets grouping helps in scaling to large graphs

- We introduced and investigated the Distributed Set Reachability problem
- Precomputation and the ability to use local indexes significantly improved the performance without hurting scalability
- Compression via equivalent sets grouping helps in scaling to large graphs
- Extensible to dynamic graphs (from our preliminary tests)

- We introduced and investigated the Distributed Set Reachability problem
- Precomputation and the ability to use local indexes significantly improved the performance without hurting scalability
- Compression via equivalent sets grouping helps in scaling to large graphs
- Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention

References I

- Wenfei Fan, Xin Wang, and Yinghui Wu, Performance guarantees for distributed reachability queries, PVLDB 5 (2012), no. 11, 1304–1315.
- Sidan Gao and Kemafor Anyanwu, PrefixSolve: efficiently solving multi-source multi-destination path queries on RDF graphs by sharing suffix computations, WWW, 2013, pp. 423–434.
- Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum, FERRARI: flexible and efficient reachability range assignment for graph indexing, ICDE, 2013, pp. 1009–1020.
 - Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien Pham, Alfons Kemper, Thomas Neumann, and Huy T. Vo, **The more the merrier: Efficient multi-source graph traversal**, PVLDB **8** (2014), no. 4, 449–460.
 - Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki, GRAIL: Scalable Reachability Index for Large Graphs, PVLDB 3 (2010), no. 1-2, 276–284.

Questions?

For more details, please visit my poster: 84