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Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting
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Graph GGraph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G

Set Reachability. S  T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G

Distributed Set Reachability 2



Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

d

dd

e

b

fr

a

a

c

g

g

i

l

l

kh

u

n

m

p

q

qq

v

o

Graph GGraph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G

Set Reachability. S  T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G

Distributed Set Reachability 2



Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

dd

d

e

b

fr

a

a

c

g

g

i

l

l

kh

u

n

m

p

qq

q

v

o

Graph G

Graph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G [SABW13, YCZ10]

Set Reachability. S  T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G

Distributed Set Reachability 2



Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

d

d

d e

b

fr

aa c

gg i

ll

kh

u

n

m

p

q

q

q

v

o

Graph G

Graph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Reachability. s t, find if there exists a path from s to t in G [SABW13, YCZ10]

Set Reachability. S  T , finds all pairs 〈s, t〉, such that s ∈ S, t ∈ T and
s t in G [TKC+14, GA13]

Distributed Set Reachability 2



Distributed Set Reachability

Distributed Set Reachability (DSR) is a generalization of graph reachability problem

extended to sets

in a distributed setting

G1 G2 G3

d

d

d e

b

fr

aa c

gg i

ll

kh

u

n

m

p

q

q

q

v

o

Graph G

Graph G is partitioned into G1, G2, G3

〈a, l〉 , 〈a, q〉

Reachable pairs

〈d, l〉 ,〈d, q〉
〈g, l〉 ,〈g, q〉

d q : True

Distributed Reachability. s t, find if there exists a path from s to t in G
[FWW12]

Distributed Set Reachability. S  T , finds all pairs 〈s, t〉, such that s ∈ S,
t ∈ T and s t in G [?]
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Applications

Application 1: SPARQL 1.1 property paths processing on knowledge graphs

Example: Find all people born in Europe who won a Nobel Prize

SELECT ?person WHERE {
?person <bornIn> ?city . ?person <won> “Nobel Prize” .
?city <locatedIn>* ?country . ?country <partOf> “Europe”.}

Cities =

 Antwerp
Saarbrücken

Ulm

 locatedIn∗
 Countries =

Belgium
France

Germany


Set Reachability Query:
Cities Countries
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Applications

Application 2: Community connectedness in social networks

Example: How billionaries and philanthropic organizations are connected

Billionaries =

 Bill Gates
Warren Buffet

Donald J. Trump

 Organizations =

 The Giving Pledge
Ford Foundation

Melinda Gates Foundation



Set Reachability Query:
Billionaries Organizations
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How to solve a DSR query?
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Query: {a, d, g} {l, q}

Supersteps
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Perfomance: On small graphs (≤ 10Mi edges) and query with |S| = 10 and |T | = 10

Dataset Time(in sec) Supersteps Comm. Size(MB)
NotreDame 94.8 70 35.2
Stanford 341.9 267 79.1
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Challenges:

no reuse of computations & no support for local indexes
leading to many iterations (≤ diameter)
and thus high communication costs and high query processing times
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An efficient solution for DSR?

Objectives:
1. minimize the size and number of messages exchanged

2. to speed up & reuse computations as much as possible in local nodes

3. scalable to large graphs
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local graph + boundary graph ⇒ Compound graph
on the compound graph,
build indexes via centralized (set) reachability approaches
[YCZ10, SABW13, GA13, TKC+14]

3. scalable to large graphs

boundary graph compression via equivalence sets grouping
condense compound graphs by computing SCCs
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Precomputation

G1 G2 G3

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

o

f

c

g

h

m

n

I1 = {f} I2 = {c, g, h} I3 = {m,n}

e

b

g i

o

O1 = {b, e} O2 = {g, i} O3 = {o}

Step 1: Compute reachability from Ii  Oi (set reachability) (Boundary Graph)
Step 2: Merge local graph and boundary graph (Compound Graph)

d e

b

fr

a

g

c

h

i n

m

o

c

g i

l

kh

u

e

f

b

n

m

o

n

m

p

q

v

o

ig

c

h

e

f

b

Step 3: Optionally, build local indexes to reuse computations and speed up query
processing
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If s and t are local ⇒ no communication, entire query can be processed locally
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Scaling to Large Graphs

One of the main challenges for scalability is the size of boundary graph

f b
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o

Boundary Graph

f ν1

υ3 ν2

υ2 ν3 υ4

ν4

−→
c, h

−→m

−→n

Compressed Boundary Graph

Size: O(
∑k

i=1(|Ii| · |Oi|) + |EC |)

Google: 43.6Mi (8.5× |E|)
LiveJ-20M: 861.4Mi (43.07× |E|)

Size: O(
∑k

i=1(|Ni| · |Υi|) + |E ′C |)

Ni: set of in-virtual nodes at i

Υi: set of out-virtual nodes at i

Ni ≤ Ii, Υi ≤ Oi, and |E ′C | ≤ |EC |

For a given partitioning G = {G1, G2, G3}, we reduce the boundary graph as follows.
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Evaluation
Datasets:

Small Large
Graphs |V| |E| Graphs |V| |E|
Amazon 403,394 3,387,388 LiveJ-68M 4,847,571 68,993,773
BerkStan 685,230 7,600,595 Twitter-1.4B 41,652,230 1,468,364,884
Google 875,713 5,105,039 Freebase-500M 97,290,357 499,982,284
NotreDame 325,729 1,497,134 Freebase-1B 156,595,723 999,965,047
Stanford 281,903 2,312,497 LUBM-500M 115,561,430 500,002,176
LiveJ-20M 2,545,981 20,000,000 LUBM-1B 222,213,904 961,394,352

Graph datasets

Setup: Master:1, Slaves:9, Memory:64 GB
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DSR is orders of magnitude faster than Giraph, Giraph++, and DSR-Fan
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Conclusions

We introduced and investigated the Distributed Set
Reachability problem

Precomputation and the ability to use local indexes
significantly improved the performance without hurting
scalability

Compression via equivalent sets grouping helps in scaling to
large graphs

Extensible to dynamic graphs (from our preliminary tests)

Thank you for your attention
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