Distributed Set Reachability

Sairam Gurajada[†] and Martin Theobald[‡]

†Max-Planck Institut für Informatik, ‡Universität Ulm

†gurajada@mpi-inf.mpg.de, ‡martin.theobald@uni-ulm.de

Distributed Set Reachability

Definition. Given a directed graph G(V,E), a k vertex-disjoint partitioning of G as $\mathcal{G}=\{G_1,G_2,\ldots,G_k\}$, a source set $S\subseteq V$, and a target set $T\subseteq V$, a DSR query $S\leadsto T$ returns all reachable pairs, i.e.,

$$S \rightsquigarrow T = \{(s,t)|s \rightsquigarrow t \text{ where } s \in S \text{ and } t \in T\}$$

Partitioned Graph $\mathcal{G} = \{G_1, G_2, G_3\}$

Example
$$S=\{a,d,g\}$$
 and $T=\{l,q\}$,

$$S \leadsto T = \{(a,l), (a,q), (d,l), (d,q), (g,l), (g,q)\}$$

Related work. Distributed reachability (Fan et al. [1]), centralized multi-source multi-target reachability (Gao et al. [2], Then et al. [3]).

Applications

- 1. Property paths processing in SPARQL 1.1
- 2. Community connectedness in social networks

Solving DSR Queries

Vertex-centric approach.

- $\bullet \ \ {\rm For\ each}\ s \in S, {\rm perform\ BFS\ traversal}$
- Each $v \in V$ maintains a list of sources that reach v Challenges:
 - 1. iterative approach (no. of iterations < diameter)
 - 2. no support for indexes to speedup processing
 - 3. no reuse of computations
 - 4. hard to interleave with other operators, e.g., joins in SPARQL

Our Objective.

- $\bullet\,$ To reuse computations as much as possible at each local partition
- A non-iterative approach, to reduce number and size of messages exchanged
- Flexibility to use any existing centralized indexing techniques to speed up query processing

Our Approach: Indexing

Definitions.

Given a partitioning $\mathcal{G} = \{G_1, G_2, \dots, G_k\}$

- ullet $G_i(V_i,E_i)$ is a partition of G and $C(V_C,E_C)$ denotes cut for a given ${\cal G}$
- $In-boundaries(I_i)$: set of all vertices in G_i which have incoming edges from vertices in other partitions
- ullet $Out-boundaries(O_i)$: set of all vertices in G_i which have outgoing edges to vertices in other partitions

Example:

$$I_1 = \{f\}, I_2 = \{c, g, h\}, I_3 = \{m, n\}$$

 $O_1 = \{b, e\}, I_2 = \{g, i\}, I_3 = \{o\}$

1. Boundary graph.

- ullet Build a per-partition boundary graph $G_i^B(V_i^B,E_i^B)$
- $V_i^B = V_C$; $E_i^B = E_C \cup \{(u,v)|u,v \in V_j \text{ and } u \leadsto v \ \forall j \neq i\}$

Our Approach: Querying

Query: $S \leadsto T$

Step 0. Partition S, T into $\{S_1 \leadsto T_1, \dots, S_k \leadsto T_k\}$ For e.g.,

$$\{a,d,g\} \leadsto \{l,q\}: \quad \frac{G_1}{\{a,d\}} \leadsto \emptyset \quad \frac{G_2}{\{g\}} \leadsto \{l\} \quad \frac{G_3}{\emptyset} \leadsto \{p\}$$

Step 1. Compute local reachability $S_i \leadsto T_i$ and $S_i \leadsto F_j, \forall j \neq i$ Example:

Step 2. Communicate reachability $S_i \leadsto F_i$ to other partitions Example:

$$\begin{array}{ll} 1 \to 2: \{(c,[a,d]),(g,[a,d]),(h,[a,d])\} & 2 \to 1: \{(f,[g])\} & 3 \to 1: \emptyset \\ 1 \to 3: \{(m,[a,d]),(n,[a,d])\} & 2 \to 3: \{(m,[g]),(n,[g])\} & 3 \to 2: \emptyset \end{array}$$

Step 3. Compute local reachability from boundaries to targets Example:

$$\begin{array}{ccc} & \frac{G_1}{\{f\}} \leadsto \emptyset & \frac{G_2}{\{c,g,h\}} \leadsto \{l\} & \frac{G_3}{\{m,n\}} \leadsto \{p\} \\ \text{Result:} & \emptyset & \{\langle a,l\rangle,\langle d,l\rangle,\langle g,l\rangle\} & \{\langle a,p\rangle,\langle d,p\rangle,\langle g,p\rangle\} \end{array}$$

${\bf 2.}\ Boundary\ graph\ compression\ via\ equivalence\ sets.$

- Large boundary graph $\mathcal{O}(\sum_{i=1}^k (|I_i| \cdot |O_i|) + |E_C|)$
- Forward Equivalence (FE): Two in-boundaries $b_1,\,b_2$ are forward-equivalent, i.e., $b_1\equiv^f b_2$ iff for any vertex $v\in V_i-I_i$, and $b_1\leadsto v$, it holds that $b_2\leadsto v$
- Backward Equivalence (BE): Two out-boundaries $b_1,\ b_2$ are backward-equivalent, i.e., $b_1\equiv^bb_2$ iff for any vertex $v\in V_i-O_i$, and $v\leadsto b_1$, it holds that $v\leadsto b_2$

Example:

- $\bullet \;$ FE sets(in-virtual nodes): $\upsilon_1=\{f\}, \upsilon_2=\{c,h\}, \upsilon_3=\{g\}, \upsilon_4=\{m,n\}$
- BE sets(out-virtual nodes): $\nu_1 = \{b, e\}, \nu_2 = \{i\}, \nu_3 = \{g\}, \nu_4 = \{o\}$

3. Compound Graph.

- • Build $G_i^C(V_i^C, E_i^C)$ by merging local graph G_i and the corresponding boundary graph G_i^B
- \bullet (Optional) Build index over $G_i^{\cal C}$ to speed up local query processing
- define forward list ${\cal F}_i$ and ${\cal B}_i,$ set of non-local in-virtual and out-virtual nodes respectively

Forward & backward lists:

$$F_1 = \{ \nu_2, \nu_3, \nu_4 \}$$

$$B_1 = \{ \nu_2, \nu_3, \nu_4 \}$$

Evaluation

Scalability.

References

- [1] Fan, W. et al. Performance Guarantees for Distributed Reachability Queries. VLDB 2012.
- [2] Gao, S. et al. PrefixSolve: efficiently solving multi-source multi-destination path queries on RDF graphs by sharing suffix computations. WWW 2013.
- [3] Then, M. et al. The More the Merrier: Efficient Multi-Source Graph Traversal. VLDB 2014

