Distributed Set Reachability

Sairam Gurajada ${ }^{\dagger}$ and Martin Theobald ${ }^{\ddagger}$

${ }^{\dagger}$ Max-Planck Institut für Informatik, ${ }^{\ddagger}$ Universität Ulm $\quad{ }^{\dagger}$ gurajada@mpi-inf.mpg.de, ${ }^{\ddagger}$ martin.theobald@uni-ulm.de

Distributed Set Reachability

Definition. Given a directed graph $G(V, E)$, a k vertex-disjoint partitioning of G as $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, a source set $S \subseteq V$, and a target set $T \subseteq V$, a DSR query $S \rightsquigarrow T$ returns all reachable pairs,
i.e.,

$$
S \rightsquigarrow T=\{(s, t) \mid s \rightsquigarrow t \text { where } s \in S \text { and } t \in T\}
$$

Partitioned Graph $\mathcal{G}=\left\{G_{1}, G_{2}, G_{3}\right\}$
Example $S=\{a, d, g\}$ and $T=\{l, q\}$,

$$
S \rightsquigarrow T=\{(a, l),(a, q),(d, l),(d, q),(g, l),(g, q)\}
$$

Related work. Distributed reachability (Fan et al. [1]), centralized multi-source multi-target reachability (Gao et al. [2], Then et al. [3]).

Applications

1. Property paths processing in SPARQL 1.1
2. Community connectedness in social networks

Solving DSR Queries

Vertex-centric approach.

- For each $s \in S$, perform BFS traversal
- Each $v \in V$ maintains a list of sources that reach v Challenges:

1. iterative approach (no. of iterations \leq diameter)
2. no support for indexes to speedup processing
3. no reuse of computations
4. hard to interleave with other operators, e.g., joins in SPARQL

Our Objective.

- To reuse computations as much as possible at each local partition
- A non-iterative approach, to reduce number and size of messages exchanged
- Flexibility to use any existing centralized indexing techniques to speed up query processing

Our Approach: Indexing

Definitions.

Given a partitioning $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$

- $G_{i}\left(V_{i}, E_{i}\right)$ is a partition of G and $C\left(V_{C}, E_{C}\right)$ denotes cut for a given \mathcal{G}
- In-boundaries $\left(I_{i}\right)$: set of all vertices in G_{i} which have incoming edges from vertices in other partitions
- Out - boundaries $\left(O_{i}\right)$: set of all vertices in G_{i} which have outgoing edges to vertices in other partitions
Example:

$$
\begin{gathered}
I_{1}=\{f\}, I_{2}=\{c, g, h\}, I_{3}=\{m, n\} \\
O_{1}=\{b, e\}, I_{2}=\{g, i\}, I_{3}=\{o\}
\end{gathered}
$$

1. Boundary graph.

- Build a per-partition boundary graph $G_{i}^{B}\left(V_{i}^{B}, E_{i}^{B}\right)$
- $V_{i}^{B}=V_{C} ; E_{i}^{B}=E_{C} \cup\left\{(u, v) \mid u, v \in V_{j}\right.$ and $\left.u \rightsquigarrow v \forall j \neq i\right\}$ Cut G_{C}

Boundary Graph G_{1}^{B}

Our Approach: Querying

Query: $S \rightsquigarrow T$
Step 0. Partition S, T into $\left\{S_{1} \rightsquigarrow T_{1}, \ldots, S_{k} \rightsquigarrow T_{k}\right\}$
For e.g.,

$$
\{a, d, g\} \rightsquigarrow\{l, q\}: \quad \frac{G_{1}}{\{a, d\}} \rightsquigarrow \emptyset \quad \frac{G_{2}}{\{g\}} \rightsquigarrow\{l\} \quad \frac{G_{3}}{\emptyset \rightsquigarrow}\{p\}
$$

Step 1. Compute local reachability $S_{i} \rightsquigarrow T_{i}$ and $S_{i} \rightsquigarrow F_{j}, \forall j \neq i$ Example:

\[

\]

Step 2. Communicate reachability $S_{i} \rightsquigarrow F_{i}$ to other partitions Example:

$1 \rightarrow 2:\{(c,[a, d]),(g,[a, d]),(h,[a, d])\}$	$2 \rightarrow 1:\{(f,[g])\}$	$3 \rightarrow 1: \emptyset$
$1 \rightarrow 3:\{(m,[a, d]),(n,[a, d])\}$	$2 \rightarrow 3:\{(m,[g]),(n,[g])\}$	$3 \rightarrow 2: \emptyset$

Step 3. Compute local reachability from boundaries to targets Example:

$$
\begin{array}{llll}
& \frac{G_{1}}{\{f\}} \emptyset & \frac{G_{2}}{\{c, g, h\} \rightsquigarrow\{l\}} & \frac{G_{3}}{\{m, n\}} \rightsquigarrow\{p\} \\
\text { Result: } & \emptyset & \{\langle a, l\rangle,\langle d, l\rangle,\langle g, l\rangle\} & \{\langle a, p\rangle,\langle d, p\rangle,\langle g, p\rangle\}
\end{array}
$$

2. Boundary graph compression via equivalence sets.

- Large boundary graph $-\mathcal{O}\left(\sum_{i=1}^{k}\left(\left|I_{i}\right| \cdot\left|O_{i}\right|\right)+\left|E_{C}\right|\right)$
- Forward Equivalence (FE): Two in-boundaries b_{1}, b_{2} are forward-equivalent, i.e., $b_{1} \equiv{ }^{f} b_{2}$ iff for any vertex $v \in V_{i}-I_{i}$, and $b_{1} \rightsquigarrow v$, it holds that $b_{2} \rightsquigarrow v$
- Backward Equivalence (BE): Two out-boundaries b_{1}, b_{2} are backwardequivalent, i.e., $b_{1} \equiv^{b} b_{2}$ iff for any vertex $v \in V_{i}-O_{i}$, and $v \rightsquigarrow b_{1}$, it holds that $v \rightsquigarrow b_{2}$
Example:
- FE sets(in-virtual nodes): $v_{1}=\{f\}, v_{2}=\{c, h\}, v_{3}=\{g\}, v_{4}=\{m, n\}$
- BE sets(out-virtual nodes): $\nu_{1}=\{b, e\}, \nu_{2}=\{i\}, \nu_{3}=\{g\}, \nu_{4}=\{o\}$

3. Compound Graph.

- Build $G_{i}^{C}\left(V_{i}^{C}, E_{i}^{C}\right)$ by merging local graph G_{i} and the corresponding boundary graph G_{i}^{B}
- (Optional) Build index over G_{i}^{C} to speed up local query processing
- define forward list F_{i} and B_{i}, set of non-local in-virtual and out-virtual nodes respectively

Forward \& backward lists:

$$
\begin{aligned}
& F_{1}=\left\{v_{2}, v_{3}, v_{4}\right\} \\
& B_{1}=\left\{\nu_{2}, \nu_{3}, \nu_{4}\right\}
\end{aligned}
$$

Evaluation

Performance.

Scalability.

[1] Fan, W. et al. Performance Guarantees for Distributed Reachability Queries. VLDB 2012. [2] Gao, S. et al. PrefixSolve: efficiently solving multi-source multi-destination path queries on RDF graphs by sharing suffix computations. WWW 2013.
[3] Then, M. et al. The More the Merrier: Efficient Multi-Source Graph Traversal. VLDB 2014

